Skip to main content

Localization Estimation Algorithm (LEA): A Supervised Prior-Based Approach for Solving the EEG/MEG Inverse Problem

  • Conference paper
Book cover Information Processing in Medical Imaging (IPMI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2732))

Abstract

Localizing and quantifying the sources of ElectroEncephalo-Graphy (EEG) and MagnetoEncephaloGraphy (MEG) measurements is an ill-posed inverse problem, whose solution requires a spatial regularization involving both anatomical and functional priors. The distributed source model enables the introduction of such constraints. However, the resulting solution is unstable since the equation system one has to solve is badly conditioned and under-determined. We propose an original approach for solving the inverse problem, that allows to deal with a better-determined system and to temper the influence of priors according to their consistency with the measured EEG/MEG data. This Localization Estimation Algorithm (LEA) estimates the amplitude of a selected subset of sources, which are localized based on a prior distribution of activation probability. LEA is evaluated through numerical simulations and compared to a classical Weighted Minimum Norm estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baillet, S., Mosher, J.C., Leahy, R.M.: Electromagnetic brain mapping. IEEE Sign. Proc. Mag. 18, 14–30 (2001)

    Article  Google Scholar 

  2. Koles, Z.J.: Trends in EEG source localization. Electroenceph. Clin. Neurophysiol. 106, 219–230 (1998)

    Article  Google Scholar 

  3. Dale, A.M., Sereno, M.: Improved localization of cortical activity by combining EEG and MEG with MRI surface reconstruction: a linear approach. J. Cognit. Neurosci. 5, 162–176 (1993)

    Article  Google Scholar 

  4. Pascual-Marqui, R.D.: Review of methods for solving the EEG inverse problem. Int. J. Bioelectromagnetism 1, 75–86 (1999), http://www.tut.fi/ijbem

    Google Scholar 

  5. Baillet, S., Garnero, L.: A bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem. IEEE Trans. Biomed. Eng. 44, 374–385 (1997)

    Article  Google Scholar 

  6. Ermer, J.J., Mosher, J.C., Baillet, S., Leahy, R.M.: Rapidly recomputable EEG forward models for realistic head shapes. Phys. Med. Biol. 46, 1265–1281 (2001)

    Article  Google Scholar 

  7. Liu, A.K., Belliveau, J.W., Dale, A.M.: Spatiotemporal imaging of human activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc. Natl. Acad. Sci. U.S.A. 95, 8945–8950 (1998)

    Article  Google Scholar 

  8. Mattout, J., Pélégrini-Issac, M., Garnero, L., Benali, H.: Multivariate source localization approach for MEG/EEG inverse problem. Neuroimage 13, S196 (2001)

    Article  Google Scholar 

  9. Mattout, J., Pélégrini-Issac, M., Garnero, L., Benali, H.: Statistical method for sources localization in MEG/EEG tomographic reconstruction. In: Proceedings of the IEEE International Conference on Image Processing, vol. 1, pp. 714–717 (2001)

    Google Scholar 

  10. Sarvas, J.: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 32, 11–22 (1987)

    Article  Google Scholar 

  11. Gorodnitsky, I.F., George, J.S., Rao, B.D.: Neuromagnetic source imaging with focuss: a recursive weighted minimum norm algorithm. Electroenceph. Clin. Neurophysiol. 95, 231–251 (1995)

    Article  Google Scholar 

  12. Phillips, C., Rugg, M.D., Friston, K.J.: Anatomically informed basis functions for EEG source localization: Combining functional and anatomical constraints. Neuroimage 16, 678–695 (2002)

    Article  Google Scholar 

  13. Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oettermann, A.: Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001)

    Article  Google Scholar 

  14. Nunez, P.L., Silberstein, R.B.: On the relationship of synaptic activity to macroscopic measurments: does co-registration of EEG with fMRI make sense? Brain Topogr. 13, 79–96 (2000)

    Article  Google Scholar 

  15. Phillips, C., Rugg, M.D., Friston, K.J.: Systematic regularisation of linear inverse solutions of the EEG source localisation problem. Neuroimage 17, 287–301 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mattout, J., Pélégrini-Issac, M., Bellio, A., Daunizeau, J., Benali, H. (2003). Localization Estimation Algorithm (LEA): A Supervised Prior-Based Approach for Solving the EEG/MEG Inverse Problem. In: Taylor, C., Noble, J.A. (eds) Information Processing in Medical Imaging. IPMI 2003. Lecture Notes in Computer Science, vol 2732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45087-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45087-0_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40560-3

  • Online ISBN: 978-3-540-45087-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics