Skip to main content

Objective integration and geometric properties of hypoplasticity

  • Chapter
  • 463 Accesses

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 13))

Summary

The constitutive equations of hypoplasticity are of the rate type. They can thus be considered as differential equations. In this paper, we are concerned with the time integration of such equations. The main challenge in time integration is to guarantee that the objectivity of the formulation is preserved by the numerical integrator. Among other possibilities, we discuss in detail a rotation neutralized description of the hypoplastic equations and its integration by projection methods.

In a second part of the paper, we use techniques from the theory of differential equations to analyze the hypoplastic equations without integrating particular trajectories, e.g. specific stress paths. For example, we show that the K 0-line in an oedomentric element test is exponentially attractive, and we compute possible bifurcation points of the hypoplastic equations for a triaxial element test.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham R, Marsden J E (1978) Foundations of Mechanics. Benjamin-Cummings, Reading, Mass.

    Google Scholar 

  2. Bauer E (1992) Zum mechanischen Verhalten granularer Stoffe unter vorwiegend ödometrischer Beanspruchung. Institut für Bodenmechanik und Felsmechanik der Universität Karlsruhe, Karlsruhe

    Google Scholar 

  3. Fellin W, Ostermann A (2002) Int. J. Numer. Anal. Meth. Geomech. 26: 1213–1233

    Google Scholar 

  4. Goldscheider M (1976) Mech. Res. Comm. 3, 463–468

    Article  Google Scholar 

  5. Gurtin M E (1981) An Introduction to Continuum Mechanics. Academic Press, San Diego New York

    MATH  Google Scholar 

  6. Hairer E, Lubich C, Wanner G (2002) Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin Heidelberg New York

    Google Scholar 

  7. Hairer E, Nørsett S P, Wanner G (1993) Solving Ordinary Differential Equations I. Nonstiff Problems. 2nd rev. ed., Springer, Berlin Heidelberg New York

    Google Scholar 

  8. Hairer E, Wanner G (1996) Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. 2nd rev. ed., Springer, Berlin Heidelberg New York

    Google Scholar 

  9. Higham D J (1997) BIT 37: 24–36

    Article  MathSciNet  MATH  Google Scholar 

  10. Kolymbas D (2000) Introduction to Hypoplasticity. Balkema, Rotterdam

    Google Scholar 

  11. Olver P J (1993) Applications of Lie Groups to Differential Equations. 2nd ed., Springer, Berlin Heidelberg New York

    Book  MATH  Google Scholar 

  12. Simo J C, Hughes T J R (1998) Computational Inelasticity. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  13. Wu W (1997) Int. J. Numer. Anal. Meth. Geomech. 21: 153–174

    Article  MATH  Google Scholar 

  14. Wu W (1992) Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. Institut für Bodenmechanik und Felsmechanik der Universität Karlsruhe, Karlsruhe

    Google Scholar 

  15. Wu W, Kolymbas D (1990) Mechanics of Materials 9: 245–253

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fellin, W., Osterman, A. (2003). Objective integration and geometric properties of hypoplasticity. In: Kolymbas, D. (eds) Advanced Mathematical and Computational Geomechanics. Lecture Notes in Applied and Computational Mechanics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45079-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45079-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07357-1

  • Online ISBN: 978-3-540-45079-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics