Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 13))

Abstract

Why is similarity an interesting issue in mechanics and, in particular, in soil and rock mechanics? The reason is that similarity introduces equivalence classes, i.e. the considered items are grouped into classes in such a way that if item A and item B belong to the same class, then they are in a certain sense equivalent, i.e. it is sufficient to consider only item A. This item is representative of all other items of the same class. This brings in an enormous simplification. Virtually, recognition (and, possibly, also cognition) is nothing but detecting similarities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.L. Turcotte and J. Huang, Fractal distributions in Geology, In: Fractals in the Earth Sciences, Chr. Barton and P.R. La Pointe (editors), Plenum Press 1995

    Google Scholar 

  2. D.L. Turcotte (1986), Fractals and Fragmentation, J. of Geophys. Res. 91, 1921–1926

    Article  Google Scholar 

  3. L.E. Vallejo, Fractal analysis of granular materials, Géotechnique 45, No. 1, 159–163 (1995)

    Article  Google Scholar 

  4. U. Gori and M. Mari, The correlation between the fractal dimension and internal friction angle of different granular materials, Soils and Foundations 41, No. 6, 17–23 (2001)

    Article  Google Scholar 

  5. S.R. Brown, Dimension of self-affine fractals: Example of rough surfaces, In: Fractals in the Earth Sciences, Chr. Barton and P.R. La Pointe (editors), Plenum Press 1995

    Google Scholar 

  6. C. Scavia (1996), The effect of scale on rock fracture toughness: a fractal approach. Géotechnique 46, No. 4, 683–693

    Article  Google Scholar 

  7. Chr. E. Krohn (1988), Sandstone Fractal and Euclidean Pore Volume Distributions. J. of Geophys. Research, 93, No. B4, 3286–3296

    Google Scholar 

  8. M.V.S. Bonala, L.N. Reddi (1999), Fractal representation of soil cohesion, J. of Geotechn. and Geoenvironmental Eng., Oct. 1999, 901–904

    Google Scholar 

  9. G.R. McDowell, A. Humphreys, Yielding of granular materials, Granular Matter 4 1–8, 2002

    Article  Google Scholar 

  10. D. Sornette, Critical Phenomena in Natural Sciences–Chaos, Fractals, Selforganization and Disorder: Concepts and Tools, Springer Berlin, 2000

    Book  MATH  Google Scholar 

  11. J. Feder, Fractals, Plenum Press, New York, 1988

    MATH  Google Scholar 

  12. Landau Lifschitz, Statistical Physics, Sect. 7

    Google Scholar 

  13. B. Eichhorn, Der Einfluß der Schergeschwindigkeit beim Triaxialversuch, Diplomarbeit, Universitt Innsbruck, 1999

    Google Scholar 

  14. J.G. Ramsay, M.I. Huber, The Techniques of Modern Structural Geology, Vol. 2: Folds and Fractures, Academic Press, London, 1993

    Google Scholar 

  15. Chr. A. Hecht, Appolonian Packing and Fractal slope of Grains Improving Geomechanical Properties in Engineering Geology, PAGeoPH, 157 (2000), 487–504

    Article  Google Scholar 

  16. Prandtl, L.; Ein Gedankenmodell zur kinetischen Theorie der festen Kr-per ZAMM, 8, Heft 2, April 1928, 85–106

    Google Scholar 

  17. J. K. Mitchel, Shearing resistence of soils as a rate process, Journal SMFD of ASCE, SM1, Jan. 1964, Vol. 90, 29–61

    Google Scholar 

  18. R. R. Hartley and R. P. Behringer, Logarithmic rate dependence of force networks in sheard granular materials. Nature, Vol 421, 27 February 2003

    Article  Google Scholar 

  19. F. Tatsuoka, et al., Time dependent deformation characteristics of stiff geomaterials in engineering practice. In: Pre-failure Deformation Characteristics of Geomaterials, Jamiolkowski et al, editors, Swets and Zeitlinger, Lisse, 2001, 1161–1262

    Google Scholar 

  20. I. Herle and G. Gudehus. Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mechanics of Cohesive-Frictional Materials, 4 (5): 461–486, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolymbas, D. (2003). Similarity in soil and rock mechanics. In: Kolymbas, D. (eds) Advanced Mathematical and Computational Geomechanics. Lecture Notes in Applied and Computational Mechanics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45079-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45079-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07357-1

  • Online ISBN: 978-3-540-45079-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics