Abstract
We consider the problem of minimum lateness/tardiness scheduling with rejection for which the objective function is the sum of the maximum lateness/tardiness of the scheduled jobs and the total rejection penalty (sum of rejection costs) of the rejected jobs. If rejection is not considered, the problems are solvable in polynomial time using the Earliest Due Date (EDD) rule. We show that adding the option of rejection makes the problems \(\mathcal{NP}\)-complete. We give pseudo-polynomial time algorithms, based on dynamic programming, for these problems. We also develop a fully polynomial time approximation scheme (FPTAS) for minimum tardiness scheduling with rejection using a geometric rounding technique on the total rejection penalty.
Observe that the usual notion of an approximation algorithm (guaranteed factor bound relative to optimal objective function value) is inappropriate when the optimal objective function value could be negative, as is the case with minimum lateness scheduling with rejection. An alternative notion of approximation, called ε-optimization approximation [7], is suitable for designing approximation algorithms for such problems. We give a polynomial time ε-optimization approximation scheme (PTEOS) for minimum lateness scheduling with rejection and a fully polynomial time ε-optimization approximation scheme (FPTEOS) for a modified problem where the total rejection penalty is the product (and not the sum) of the rejection costs of the rejected jobs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics 5, 287–326 (1979)
Lawler, E.L., Lenstra, J.K., Rinooy Kan, A.H.G., Shmoys, D.B.: Sequencing and Scheduling: Algorithms and Complexity. In: Handbooks in Operations Research and Management Science. Logistics of Production and Inventory, vol. 4, pp. 445–522. North-Holland, Amsterdam (1993)
Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.: Multiprocessor scheduling with rejection. In: 7th ACM-SIAM Symposium on Discrete Algorithms, pp. 95–103 (1996)
Hoogeveen, H., Skutella, M., Woeginger, G.J.: Preemptive scheduling with rejection. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 268–277. Springer, Heidelberg (2000)
Seiden, S.: Preemptive multiprocessor scheduling with rejection. Theoretical Computer Science 262(1), 437–458 (2001)
Engels, D.W., Karger, D.R., Kolliopoulos, S.G., Sengupta, S., Uma, R.N., Wein, J.: Techniques for Scheduling with Rejection. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 490–501. Springer, Heidelberg (1998)
Orlin, J.B., Schulz, A.S., Sengupta, S.: ∈-Optimization Schemes and L-Bit Precision: Alternative Perspectives in Combinatorial Optimization. 32nd Annual ACM Symposium on Theory of Computing (STOC) (2000)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sengupta, S. (2003). Algorithms and Approximation Schemes for Minimum Lateness/Tardiness Scheduling with Rejection. In: Dehne, F., Sack, JR., Smid, M. (eds) Algorithms and Data Structures. WADS 2003. Lecture Notes in Computer Science, vol 2748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45078-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-45078-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40545-0
Online ISBN: 978-3-540-45078-8
eBook Packages: Springer Book Archive