New Directions and New Challenges in Algorithm Design and Complexity, Parameterized

  • Michael R. Fellows
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2748)


The goals of this survey are to:

(1) Motivate the basic notions of parameterized complexity and give some examples to introduce the toolkits of FPT and W-hardness as concretely as possible for those who are new to these ideas.

(2) Describe some new research directions, new techniques and challenging open problems in this area.


Parameterized Complexity Vertex Cover Parameterized Problem Reduction Rule Polynomial Time Approximation Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ACGKMP99]
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  2. [AFN02]
    Alber, J., Fellows, M., Niedermeier, R.: Efficient Data Reduction for Dominating Set: A Linear Problem Kernel for the Planar Case. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 150–159. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. [AFLR03]
    Abu-Khzam, F., Fellows, M., Langston, M., Rosamond, F.: Bounded Vertex Cover Structure and the Design of FPT Algorithms (2003) (manuscript)Google Scholar
  4. [ALSS03]
    Abu-Khzam, F., Langston, M.A., Shanbhag, P., Symons, C.T.: High Performance Tools for Fixed-Parameter Tractable Implementations. In: WADS 2003 Workshop Presentation (2003)Google Scholar
  5. [ALMSS92]
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Prof verification and intractability of optimization problems. In: Proceedings of the IEEE Symposium on the Foundations of Computer Science (1992)Google Scholar
  6. [Ar96]
    Arora, S.: Polynomial Time Approximation Schemes for Euclidean TSP and Other Geometric Problems. In: Proceedings of the 37th IEEE Symposium on Foundations of Computer Science, pp. 2–12 (1996)Google Scholar
  7. [Ar97]
    Arora, S.: Nearly Linear Time Approximation Schemes for Euclidean TSP and Other Geometric Problems. In: Proc. 38th Annual IEEE Symposium on the Foundations of Computing (FOCS 1997), pp. 554–563. IEEE Press, Los Alamitos (1997)CrossRefGoogle Scholar
  8. [AYZ95]
    Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42, 844–856 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  9. [Baz95]
    Bazgan, C.: Schémas d’approximation et complexité paramétrée. Rapport de stage de DEA d’Informatique à Orsay (1995) Google Scholar
  10. [BBW03]
    Bonsma, P.S., Brüggemann T., Woeginger, G.J.: A faster FPT algorithm for finding spanning trees with many leaves (2003) (manuscript) Google Scholar
  11. [Bod93]
    Bodlaender, H.L.: On Linear Time Minor Tests and Depth-First Search. Journal of Algorithms 14, 1–23 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  12. [Bod96]
    Bodlaender, H.L.: A Linear Time Algorithm for Finding Tree-Decompositions of Small Treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  13. [CCDF97]
    Cai, L., Chen, J., Downey, R., Fellows, M.: On the Parameterized Complexity of Short Computation and Factorization. Archive for Mathematical Logic 36, 321–337 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  14. [CFJR01]
    Cai, L., Fellows, M., Juedes, D., Rosamond, F.: Efficient Polynomial-Time Approximation Schemes for Problems on Planar Structures: Upper and Lower Bounds (2001) (manuscript) Google Scholar
  15. [CJ01]
    Cai, L., Juedes, D.: On the Existence of Subexponential Parameterized Algorithms (2001) (manuscript); Revised version of the paper, Subexponential Parameterized Algorithms Collapse the W-Hierarchy. In: Proceedings 28th ICALP, Springer-Verlag LNCS 2076, pp. 273–284 (2001); (The conference version contains some major flaws) Google Scholar
  16. [CK00]
    Chekuri, C., Khanna, S.: A PTAS for the Multiple Knapsack Problem. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pp. 213–222 (2000)Google Scholar
  17. [CKJ01]
    Chen, J., Kanj, I.A., Jia, W.: Vertex Cover: Further Observations and Further Improvements. Journal of Algorithms 41, 280–301 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  18. [CM99]
    Chen, J., Miranda, A.: A Polynomial-Time Approximation Scheme for General Multiprocessor Scheduling. In: Proc. ACM Symposium on Theory of Computing (STOC 1999), pp. 418–427. ACM Press, New York (1999)CrossRefGoogle Scholar
  19. [CT97]
    Cesati, M., Trevisan, L.: On the Efficiency of Polynomial Time Approximation Schemes. Information Processing Letters 64, 165–171 (1997)CrossRefMathSciNetGoogle Scholar
  20. [DEFPR03]
    Downey, R., Estivill-Castro, V., Fellows, M., Prieto-Rodriguez, E., Rosamond, F.: Cutting Up is Hard to Do: the Parameterized Complexity of k-Cut and Related Problems. Electronic Notes in Theoretical Computer Science 78, 205–218 (2003)Google Scholar
  21. [DF95a]
    Downey, R.G., Fellows, M.R.: Parameterized Computational Feasibility. In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 219–244. Birkhauser, Boston (1995)Google Scholar
  22. [DF95b]
    Downey, R.G., Fellows, M.R.: Fixed Parameter Tractability and Completeness II: Completeness for W[1]. Theoretical Computer Science A 141, 109–131 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  23. [DF99]
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  24. [DFPR03]
    Downey, R., Fellows, M., Prieto-Rodriguez, E., Rosamond, F.: Fixedparameter Tractability and Completeness V: Parametric Miniatures (2003) (manuscript)Google Scholar
  25. [DFS99]
    Downey, R., Fellows, M., Stege, U.: Parameterized Complexity: A Framework for Systematically Confronting Computational Intractability. In: Graham, R., Kratochvíl, J., Nestríl, J., Roberts, F. (eds.) Proceedings of the DIMACS DIMATIA Workshop, Prague, 1997. AMS-DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 49, pp. 49–99 (1999)Google Scholar
  26. [Dow03]
    Downey, R.: Parameterized Complexity for the Skeptic. In: Proceedings of the IEEE Computational Complexity Conference (CCC 2003). IEEE Press, Los Alamitos (2003) (to appear)Google Scholar
  27. [DRST02]
    Dehne, F., Rau-Chaplin, A., Stege, U., Taillon, P.: Solving Large FPT Problems on Coarse Grained Parallel Machines (2002) (manuscript) Google Scholar
  28. [EJ91]
    Emerson, E.A., Jutla, C.S.: Tree Automata, μ-Calculus and Determinacy. In: Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS 1991), pp. 368–377. IEEE Press, Los Alamitos (1991)Google Scholar
  29. [EJS01]
    Erlebach, T., Jansen, K., Seidel, E.: Polynomial Time Approximation Schemes for Geometric Graphs. In: Proc. ACM Symposium on Discrete Algorithms (SODA 2001), pp. 671–679. ACM Press, New York (2001)Google Scholar
  30. [FGN03]
    Fellows, M., Gramm, J., Niedermeier, R.: On the Parameterized Intractability of Motif Search Problems (2003) (manuscript) Google Scholar
  31. [FL92]
    Fellows, M.R., Langston, M.A.: On Well-Partial-Order Theory and its Applications to Combinatorial Problems of VLSI Design. SIAM Journal on Discrete Mathematics 5, 117–126Google Scholar
  32. [FMRS00]
    Fellows, M., McCartin, C., Rosamond, F., Stege, U.: Coordinatized kernels and catalytic reductions: An improved FPT algorithm for max leaf spanning tree and other problems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 240–251. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  33. [GH88]
    Goldschmidt, O., Hochbaum, D.S.: A Polynomial Algorithm for the k-Cut Problem. In: Proc. 29th Annual Symp. on the Foundations of Computer Science (FOCS), pp. 444-451 (1988) Google Scholar
  34. [GH94]
    Goldschmidt, O., Hochbaum, D.S.: A Polynomial Algorithm for the k-Cut Problem for Fixed k. Mathematics of Operations Research 19, 24–37 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  35. [GLS99]
    Gottlob, G., Leone, N., Scarcello, F.: Hypertree Decompositions and Tratable Queries. In: Proceedings of the 18th ACM Symposium on Database Systems, pp. 21–32 (1999)Google Scholar
  36. [Gr03]
    Grohe, M.: The Complexity of Homomorphism and Constraint Satisfaction Problems Seen from the Other Side (2003) (manuscript) Google Scholar
  37. [GSS01]
    Gottlob, G., Scarcello, F., Sideri, M.: Fixed Parameter Complexity in AI and Nonmonotonic Reasoning. To appear in The Artificial Intelligence Journal. Conference version in: Proc. of the 5th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 1999), vol. 1730 of Lecture Notes in Artificial Intelligence pp. 1–18 (1999)Google Scholar
  38. [Hal03]
    Hallett, M.: Presentation at the Annual Conference of the New Zealand Mathematics Research Institute, New Plymouth (January 2003) Google Scholar
  39. [KM96]
    Khanna, S., Motwani, R.: Towards a Syntactic Characterization of PTAS. In: Proc. STOC 1996, pp. 329–337. ACM Press, New York (1996)Google Scholar
  40. [KR00]
    Khot, S., Raman, V.: Parameterized Complexity of Finding Subgraphs with Hereditary properties. In: Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-Castro, V. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 137–147. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  41. [KS96]
    Karger, D.R., Stein, C.: A New Approach to the Minimum Cut Problem. Journal of the ACM 43, 601–640 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  42. [Len83]
    Lenstra, H.W.: Integer Programming with a Fixed Number of Variables. Mathematics of Operations Research 8, 538–548 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  43. [Luks82]
    Luks, E.: Isomorphism of Graphs of Bounded Valence Can Be Tested in Polynomial Time. Journal of Computing and Systems Sciences 25, 42–65 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  44. [MR99]
    Mahajan, M., Raman, V.: Parameterizing Above Guaranteed Values: MaxSat and MaxCut. J. Algorithms 31, 335–354 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  45. [Nie02]
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Habilitationschrift, University of Tübingen (2002) Google Scholar
  46. [NR99]
    Niedermeier, R., Rossmanith, P.: Upper Bounds for Vertex Cover Further Improved. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 561–570. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  47. [PS03]
    Prieto, E., Sloper, C.: Either/Or: Using Vertex Cover Structure in Designing FPT Algorithms — the Case of k-Internal Spanning Tree. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 474–483. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  48. [RS95]
    Robertson, N., Seymour, P.D.: Graph Minors XIII. The Disjoint Paths Problem. Journal of Combinatorial Theory, Series B 63, 65–110 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  49. [ST98]
    Shamir, R., Tzur, D.: The Maximum Subforest Problem: Approximation and Exact Algorithms. In: Proc. ACM Symposium on Discrete Algorithms (SODA 1998), pp. 394–399. ACM Press, New York (1998)Google Scholar
  50. [Wei98]
    Weihe, K.: Covering Trains by Stations, or the Power of Data Reduction. In: Proc. ALEX 1998, pp. 1–8 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Michael R. Fellows
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceUniversity of Newcastle, University DriveCallaghanAustralia

Personalised recommendations