Advertisement

Alternating Paths along Orthogonal Segments

  • Csaba D. Tóth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2748)

Abstract

It was shown recently that the segment endpoint visibility graph Vis(S) of any set S of n disjoint line segments in the plane admits an alternating path of length Θ(log n), and this bound is best possible apart from a constant factor. This paper focuses on the variant of the problem where S is a set of n disjoint axis-parallel line segments. We show that the length of a longest alternating path in the worst case is \(\Theta(\sqrt{n})\). We also present an O(n 2.5) time algorithm to find an alternating path of length \(\Omega(\sqrt{n})\). Finally, we consider sets of axis-parallel segments where the extensions of no two segments meet in the free space \(\mathbb{E}^2 \setminus \cup S\), and show that in that case all the segments can be included in a common alternating path.

Keywords

Line Segment Lower Left Corner Vertical Segment Horizontal Segment Visibility Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benczúr, A.A., Förster, J., Király, Z.: Dilworth’s theorem and its application for path systems of a cycle – implementation and analysis. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 498–509. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Bespamyatnikh, S.: Computing homotopic shortest paths in the plane. In: Proc. 14th ACM-SIAM Symp. Discrete Algorithms, Baltimore, MD, pp. 609–617 (2003)Google Scholar
  3. 3.
    Demaine, E.D., O’Rourke, J.: Open Problems from CCCG 1999. In: Proc. 11th Canadian Conf. on Comput. Geom., Vancouver, BC (1999)Google Scholar
  4. 4.
    Dilworth, R.: A decomposition theorem for partially ordered sets. Ann. of Maths. 51, 161–166 (1950)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Dumitrescu, A., Tóth, G.: Ramsey-type results for unions of comparability graphs. Graphs and Combinatorics 18, 245–251 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ford Jr., L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)zbMATHGoogle Scholar
  7. 7.
    Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matching in bipartite graphs. SIAM J. Cornput. 2, 225–231 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hoffmann, M., Tóth, C.D.: Alternating paths through disjoint line segments. Inform. Proc. Letts. (to appear)Google Scholar
  9. 9.
    Hoffmann, M., Tóth, C.D.: Segment endpoint visibility graphs are Hamiltonian. Comput. Geom. Theory Appl. 26(1) (2003)Google Scholar
  10. 10.
    Larman, D.G., Matoušek, J., Pach, J., Törőcsik, J.: A Ramsey-type result for planar convex sets. Bulletin of the London Mathematical Society 26, 132–136 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    O’Rourke, J.: Visibility. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, ch. 25, pp. 467–480. CRC Press, Boca Raton (1997)Google Scholar
  12. 12.
    O’Rourke, J., Rippel, J.: Two segment classes with Hamiltonian visibility graphs. Comput. Geom. Theory Appl. 4, 209–218 (1994)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Overmars, M.H., Welzl, E.: New methods for computing visibility graphs. In: Proc. 4th ACM Symp. Comput. Geom. (Urbana-Champaign, IL, 1988), pp. 164–171Google Scholar
  14. 14.
    Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar graphs. Discrete Comput. Geom. 1, 321–341 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Tóth, C.D.: Illumination in the presence of opaque line segments in the plane. Comput. Geom. Theory Appl. 21, 193–204 (2002)zbMATHGoogle Scholar
  16. 16.
    Tóth, G.: Note on geometric graphs. J. Combin. Theory, Ser. A 89, 126–132 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Urabe, M., Watanabe, M.: On a counterexample to a conjecture of Mirzaian. Comput. Geom. Theory Appl. 2, 51–53 (1992)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Urrutia, J.: Algunos problemas abiertos (in Spanish). In: Actas de los IX Encuentros de Geometría Computacional, Girona (2001)Google Scholar
  19. 19.
    Urrutia, J.: Open problems in computational geometry. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 4–11. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Csaba D. Tóth
    • 1
  1. 1.Department of Computer ScienceUniversity of California at Santa BarbaraUSA

Personalised recommendations