Drawing Graphs with Large Vertices and Thick Edges

  • Gill Barequet
  • Michael T. Goodrich
  • Chris Riley
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2748)


We consider the problem of representing size information in the edges and vertices of a planar graph. Such information can be used, for example, to depict a network of computers and information traveling through the network. We present an efficient linear-time algorithm which draws edges and vertices of varying 2-dimensional areas to represent the amount of information flowing through them. The algorithm avoids all occlusions of nodes and edges, while still drawing the graph on a compact integer grid.


Planar Graph Angular Resolution Sample Graph Graph Draw Edge Crossing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Di Battista, G., Didimo, W., Patrignani, M., Pizzonia, M.: Orthogonal and quasi-upward drawings with vertices of prescribed size. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 297–310. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1999)zbMATHGoogle Scholar
  3. 3.
    Cheng, C., Duncan, C., Goodrich, M.T., Kobourov, S.: Drawing planar graphs with circular arcs. Discrete & Computational Geometry 25, 405–418 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chrobak, M., Payne, T.: A linear-time algorithm for drawing planar graphs. Information Processing Letters 54, 241–246 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Duncan, C.A., Efrat, A., Kobourov, S.G., Wenk, C.: Drawing with fat edges. In: Proc. 9th Int. Symp. on Graph Drawing, pp. 162–177 (2001)Google Scholar
  6. 6.
    Eiglsperger, M., Kaufmann, M.: Fast Compaction for orthogonal drawings with vertices of prescribed size. In: Proc. 9th Int. Symp. on Graph Drawing, pp. 124–138 (2001)Google Scholar
  7. 7.
    Formann, M., Hagerup, T., Haralambides, J., Kaufmann, M., Leighton, F.T., Simvonis, A., Welzl, E., Woeginger, G.: Drawing graphs in the plane with high resolution. SIAM J. of Computing 22, 1035–1052 (1993)zbMATHCrossRefGoogle Scholar
  8. 8.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.P.: A technique for drawing directed graphs. IEEE Trans. on Software Engineering 19, 214–230 (1993)CrossRefGoogle Scholar
  10. 10.
    Garg, A., Tamassia, R.: Planar drawings and angular resolution: Algorithms and bounds. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 12–23. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  11. 11.
    Goodrich, M.T., Wagner, C.: A framework for drawing planar graphs with curves and polylines. In: Proc. 6th Int. Symp. on Graph Drawing, pp. 153–166 (1998)Google Scholar
  12. 12.
    Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16, 4–32 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Klau, G.W., Mutzel, P.: Optimal compaction of orthogonal grid drawings. In: Cornuejols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 304–319. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Klau, G.W., Mutzel, P.: Combining graph labeling and compaction. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 27–37. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Malitz, S., Papakostas, A.: On the angular resolution of planar graphs. SIAM J. of Discrete Mathematics 7, 172–183 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press, Cheshire (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Gill Barequet
    • 1
  • Michael T. Goodrich
    • 2
  • Chris Riley
    • 3
  1. 1.Center for Graphics and Geometric Computing, Dept. of Computer ScienceThe Technion, Israel Institute of TechnologyHaifaIsrael
  2. 2.Dept. of Information and Computer ScienceUniv. of CaliforniaIrvineUSA
  3. 3.Center for Algorithm Engineering, Dept. of Computer ScienceJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations