Advertisement

Algorithms and Models for Railway Optimization

  • Dorothea Wagner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2748)

Abstract

Mobility is increasing in a way that calls for systematic traffic planning in a broad context. In Europe the railways are requested to play a central role in this development. Future developments and improvements of European railways will have an impact on people’s lives and therefore on society in general. The problems arising in this context are large and highly complex. Here are many interesting and challenging algorithmic problems waiting to be studied. Research topics include the network design, line planning, time table generation, crew scheduling, rolling stock rostering, shunting, time table information and delay management.

In this talk we present models and algorithmic methods for several of these problems. We will discuss the interplay between algorithmic aspects and practical issues like availability and quality of data. The focus will be on two topics from network design and time table information respectively where we have ongoing cooperation with railway companies. As an example from network design, we will consider a scenario where the effects of introducing new train stops in the existing railway network is studied. For time table information whose algorithmic core problem is the computation of shortest paths we discuss new algorithmic issues arising from the huge size of the underlying data.

Keywords

Short Path Network Design Short Path Problem Crew Schedule Railway System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Jagadish, H.: Algorithms for Searching Massive Graphs. IEEE Transact. Knowledge and Data Eng. 6, 225–238 (1994)CrossRefGoogle Scholar
  2. 2.
    Brandes, U., Schulz, F., Wagner, D., Willhalm, T.: Travel Planning with Self-Made Maps. In: Buchsbaum, A.L., Snoeyink, J. (eds.) ALENEX 2001. LNCS, vol. 2153, pp. 132–144. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Brodal, G.S., Jacob, R.: Time-dependent networks as models to achieve fast exact time-table queries. Technical Report ALCOMFT-TR-01-176, ALCOM-FT (September 2001) Google Scholar
  4. 4.
    Bussiek, M.R., Winter, T., Zimmermann, U.T.: Discrete optimization in public rail transport. Mathematical Programming 79(3), 415–444 (1997)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering problem. Operations Research 47(5), 730–743 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Car, A., Frank, A.: Modelling a Hierarchy of Space Applied to Large Road Networks. In: Nievergelt, J., Widmayer, P., Roos, T., Schek, H.-J. (eds.) IGIS 1994. LNCS, vol. 884, pp. 15–24. Springer, Heidelberg (1994)Google Scholar
  7. 7.
    Chaudhuri, S., Zaroliagis, C.: Shortest Paths in Digraphs of Small Treewidth. Part I: Sequential Algorithms. Algorithmica 27(3), 212–226 (2000); Special Issue on TreewidthzbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chaudhuri, S., Zaroliagis, C.: Shortest Paths in Digraphs of Small Treewidth. Part II: Optimal Parallel Algorithms. Theoretical Computer Science 203(2), 205–223 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Frederickson, G.: Planar graph decomposition and all pairs shortest paths. Journal of the ACM 38(1), 162–204 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Frederickson, G.: Using Cellular Graph: Embeddings in Solving All Pairs Shortest Path Problems. Journal of Algorithms 19, 45–85 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability — A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  12. 12.
    Hafas is a trademark of Hacon Ingenieurgesellschaft mbH, Hannover, Germany, See http://bahn.hafas.de
  13. 13.
    Hamacher, H.W., Liebers, A., Schöbel, A., Wagner, D., Wagner, F.: Locating new stops in a railway network. Electronic Notes in Theoretical Computer Science 50(1) (2001)Google Scholar
  14. 14.
    Ishikawa, K., Ogawa, M., Azume, S., Ito, T.: Map Navigation Software of the Electro Multivision of the 1991 Toyota Soarer. In: IEEE Int. Conf. Vehicle Navig. Inform. Syst., pp. 463–473 (1991)Google Scholar
  15. 15.
    Jung, S., Pramanik, S.: HiTi Graph Model of Topographical Road Maps in Navigation Systems. In: Proc. 12th IEEE Int. Conf. Data Eng., pp. 76–84 (1996)Google Scholar
  16. 16.
    Kavvadias, D., Pantziou, G., Spirakis, P., Zaroliagis, C.: Hammock-on-Ears Decomposition: A Technique for the Efficient Parallel Solution of Shortest Paths and Other Problems. Theoretical Computer Science 168(1), 121–154 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kranakis, E., Penna, P., Schlude, K., Taylor, D.S., Widmayer, P.: Improving customer proximity to railway stations. Technical report, ETH Zürich (2002); To appear in Proceedings 5th Conference on Algorithms and Complexity, (CIAC 2003) (2003) Google Scholar
  18. 18.
    Laporte, G., Mesa, J.A., Ortega, F.A.: Locating stations on rapid transit lines. Computers and Operations Research 29, 741–759 (2002)zbMATHCrossRefGoogle Scholar
  19. 19.
    Mammana, F.M., Mecke, S., Wagner, D.: The station location problem on two intersecting lines (submitted) Google Scholar
  20. 20.
    Mecke, S., Wagner, D.: (in preparation) Google Scholar
  21. 21.
    Schnee, M., Müller-Hannemann, M., Weihe, K.: Getting train timetables into the main storage. Electronic Notes in Theoretical Computer Science 66 (2002)Google Scholar
  22. 22.
    Möhring, R.: Angewandte Mathematik – insbesondere Informatik, pp. 192–220. Vieweg (1999)Google Scholar
  23. 23.
    Müller-Hannemann, M., Weihe, K.: Pareto shortest paths is often feasible in practice. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.) WAE 2001. LNCS, vol. 2141, pp. 185–198. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Murray, A., Davis, R., Stimson, R.J., Ferreira, L.: Public transportation access. Transportation Research D 3(5), 319–328 (1998)CrossRefGoogle Scholar
  25. 25.
    Murray, A.: Coverage models for improving public transit system accessibility and expanding access. Technical report, Department of Geography, Ohio State University (2001) Google Scholar
  26. 26.
    Murray, A.: Strategic analysis of public transport coverage. Socio-Economic Planning Sciences 35, 175–188 (2001)CrossRefGoogle Scholar
  27. 27.
    Orda, A., Rom, R.: Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length. Journal of the ACM 37(3) (1990)Google Scholar
  28. 28.
    Orda, A., Rom, R.: Minimum weight paths in time-dependent networks. Networks 21 (1991) Google Scholar
  29. 29.
    Pallottino, S., Scutellà, M.G.: Equilibrium and Advanced Transportation Modelling, ch. 11. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  30. 30.
    Schöbel, A.: Set covering problems with consecutive ones property. Technical report, Universität Kaiserslautern (2001) Google Scholar
  31. 31.
    Schöbel, A.: Customer-oriented optimization in public transportation. Habilitation Thesis (2002) Google Scholar
  32. 32.
    Schöbel, A., Hamacher, H.W., Liebers, A., Wagner, D.: The continuous stop location problem in public transportation. Technical report, University of Kaiserslautern, Wirtschaftsmathematik (2002), Report in Wirtschaftsmathematik Nr. 81/2001 (submitted) Google Scholar
  33. 33.
    Schöbel, A., Schröder, M.: Covering population areas by railway stops. Proceedings of OR 2002, Klagenfurt (2002) Google Scholar
  34. 34.
    Toregas, C., Swain, R., ReVelle, C., Bergman, L.: The location of emergency facilities. Operations Research 19, 1363–1373 (1971)zbMATHCrossRefGoogle Scholar
  35. 35.
    Siklóssy, L., Tulp, E.: The Space Reduction Method: A method to reduce the size of search spaces. Information Processing Letters 38(4), 187–192 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: An empirical case study from public railroad transport. Journal of Experimental Algorithmics 5(12) (2000) Google Scholar
  37. 37.
    Schulz, F., Wagner, D., Zaroliagis, C.: Using multi-level graphs for timetable information. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 43–59. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  38. 38.
    Schulz, F., Wagner, D., Zaroliagis, C.: Two approaches for time-table information: A comparison of models and performance (submitted) Google Scholar
  39. 39.
    Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest paths in large sparse graphs. Technical Report 183, Preprints in Mathematics and Computer Science at University of Konstanz (2003) (submitted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Dorothea Wagner
    • 1
  1. 1.Department of Computer ScienceUniversity of KarlsruheGermany

Personalised recommendations