Advertisement

Distribution-Sensitive Binomial Queues

  • Amr Elmasry
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2748)

Abstract

A new priority queue structure is introduced, for which the amortized time to insert a new element is O(1) while that for the minimum-extraction is \(O({\rm log} \bar{K})\). \(\bar{K}\) is the average, taken over all the deleted elements x, of the number of elements that are inserted during the lifespan of x and are still in the heap when x is removed. Several applications of our structure are mentioned.

Keywords

Priority Queue Binomial Tree Split Operation Delete Element Marked Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, M.: Implementation and analysis of binomial queue algorithms. SIAM J. Comput. 7, 298–319 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brown, M., Tarjan, R.: Design and analysis of data structures for representing sorted lists. SIAM J. Comput. 9, 594–614 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Carlsson, S., Munro, J.I.: An implicit binomial queue with constant insertion time. 1st SWAT. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 1–13. Springer, Heidelberg (1988)Google Scholar
  4. 4.
    Cole, R.: On the dynamic finger conjecture for splay trees. Part II: The proof. SIAM J. Comput. 30, 44–85 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    De Berg, M., Kreveld, M., Overmars, M., Shwarzkopf, O.: Computational geometry-algorithms and applications. Springer, Berlin (1997)zbMATHGoogle Scholar
  6. 6.
    Devroye, L.: Nonuniform random variate generation. Springer, Heidelberg (1986)Google Scholar
  7. 7.
    Doberkat, E.: Deleting the root of a heap. Acta Informatica 17, 245–265 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dutton, R.: Weak-Heapsort. BIT 33, 372–381 (1993)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Edelkamp, S., Wegener, I.: On the performance of weak-heapsort. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 254–260. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Elmasry, A.: Priority queues, pairing and adaptive sorting. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 183–194. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Elmasry, A.: A new proof for the sequential access theorem for splay trees. WSES, ADISC. Theoretical and Applied Mathematics, pp. 132–136 (2001)Google Scholar
  12. 12.
    Fredman, M., Sedgewick, R., Sleator, D., Tarjan, R.: The pairing heap: a new form of self adjusting heap. Algorithmica 1(1), 111–129 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Guibas, L., McCreight, E., Plass, M., Roberts, J.: A new representation of linear lists. ACM STOC 9, 49–60 (1977)MathSciNetGoogle Scholar
  14. 14.
    Iacono, J.: Improved upper bounds for pairing heaps. In: 7th SWAT. LNCS, pp. 32–45 (2000)Google Scholar
  15. 15.
    Iacono, J.: Distribution sensitive data structures. Ph.D. thesis, Rutgers University (2001) Google Scholar
  16. 16.
    Iacono, J., Langerman, S.: Queaps. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 211–218. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Knuth, D.: The Art of Computer Programming, Sorting and Searching, 2nd edn., vol. III. Addison-wesley, Reading (1998)Google Scholar
  18. 18.
    Mannila, H.: Measures of presortedness and optimal sorting algorithms. IEEE Trans. Comput. C-34, 318–325 (1985)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Porter, T., Simon, I.: Random insertion into a priority queue structure. IEEE Trans. Software Engineering 1 SE, 292–298 (1975)MathSciNetGoogle Scholar
  20. 20.
    Sleator, D., Tarjan, R.: Self-adjusting binary search trees. J. ACM 32(3), 652–686 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Sundar, R.: On the deque conjecture for the splay algorithm. Combinatorica 12, 95–124 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Tarjan, R.: Sequential access in splay trees takes linear time. Combinatorica 5, 367–378 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Tarjan, R.: Amortized computational complexity. SIAM J. Alg. Disc. Meth. 6, 306–318 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Vuillemin, J.: A data structure for manipulating priority queues. Comm. ACM 21(4), 309–314 (1978)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Amr Elmasry
    • 1
  1. 1.Computer Science DepartmentAlexandria UniversityAlexandriaEgypt

Personalised recommendations