Circuits on Cylinders

  • Kristoffer Arnsfelt Hansen
  • Peter Bro Miltersen
  • V. Vinay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2751)

Abstract

We consider the computational power of constant width polynomial size cylindrical circuits and nondeterministic branching programs. We show that every function computed by a \({\bf \prod}_2 \circ {\bf MOD} \circ {\bf AC}^0\) circuit can also be computed by a constant width polynomial size cylindrical nondeterministic branching program (or cylindrical circuit) and that every function computed by a constant width polynomial size cylindrical circuit belongs to ACC0.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrington, D.A.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. J. Comput. System Sci. 38(1), 150–164 (1989)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Barrington, D.A.M., Lu, C.-J., Miltersen, P.B., Skyum, S.: Searching constant width mazes captures the AC0 hierarchy. In: Proceedings of the 15th Annual Symposium on Theoretical Aspects of Computer Science, pp. 73–83 (1998)Google Scholar
  3. 3.
    Barrington, D.A.M., Lu, C.-J., Miltersen, P.B., Skyum, S.: On monotone planar circuits. In: 14th Annual IEEE Conference on Computational Complexity, pp. 24–31. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  4. 4.
    Barrington, D.A.M., Thérien, D.: Finite monoids and the fine structure of NC1. Journal of the ACM (JACM) 35(4), 941–952 (1988)CrossRefGoogle Scholar
  5. 5.
    Grolmusz, V., Tardos, G.: Lower bounds for (modp − modm) circuits. SIAM Journal on Computing 29(4), 1209–1222 (2000)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hansen, K.A.: Constant width planar computation characterizes ACC0. Technical Report 25, Electronic Colloquium on Computational Complexity (2003)Google Scholar
  7. 7.
    Hansen, K.A., Miltersen, P.B., Vinay, V.: Circuits on cylinders. Technical Report 66, Electronic Colloquium on Computational Complexity (2002)Google Scholar
  8. 8.
    Skyum, S., Valiant, L.G.: A complexity theory based on boolean algebra. Journal of the ACM (JACM) 32(2), 484–502 (1985)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Vinay, V.: Hierarchies of circuit classes that are closed under complement. In: 11th Annual IEEE Conference on Computational Complexity, pp. 108–117. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Kristoffer Arnsfelt Hansen
    • 1
  • Peter Bro Miltersen
    • 1
  • V. Vinay
    • 2
  1. 1.Department of Computer ScienceUniversity of AarhusDenmark
  2. 2.Indian Institute of ScienceBangaloreIndia

Personalised recommendations