Skip to main content

A Multi-layered Bayesian Network Model for Structured Document Retrieval

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2711))

Abstract

New standards in document representation, like for example SGML, XML, and MPEG-7, compel Information Retrieval to design and implement models and tools to index, retrieve and present documents according to the given document structure. The paper presents the design of an Information Retrieval system for multimedia structured documents, like for example journal articles, e-books, and MPEG-7 videos. The system is based on Bayesian Networks, since this class of mathematical models enable to represent and quantify the relations between the structural components of the document. Some preliminary results on the system implementation are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Acid, S., de Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: An information retrieval model based on simple Bayesian networks. International Journal of Intelligent Systems 18, 251–265 (2003)

    Article  MATH  Google Scholar 

  2. Baumgarten, C.: A probabilistic model for distributed information retrieval. In: Proceedings of the 20th ACM SIGIR Conference, pp. 258–266 (1997)

    Google Scholar 

  3. Bordogna, G., Pasi, G.: Flexible representation and querying of heterogeneous structured documents. Kibernetika 36(6), 617–633 (2000)

    Google Scholar 

  4. Chiaramella, Y.: Information retrieval and structured documents. In: Agosti, M., Crestani, F., Pasi, G. (eds.) ESSIR 2000. LNCS, vol. 1980, pp. 291–314. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Crestani, F., Lalmas, M., van Rijsbergen, C.J., Campbell, L.: Is this document relevant?... probably. A survey of probabilistic models in information retrieval. ACM Computing Survey 30(4), 528–552 (1998)

    Article  Google Scholar 

  6. de Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: A layered Bayesian network model for document retrieval. In: Crestani, F., Girolami, M., van Rijsbergen, C.J.K. (eds.) ECIR 2002. LNCS, vol. 2291, pp. 169–182. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. de Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: The Bayesian network retrieval model: Foundations and performance. Submitted to the International Journal of Approximate Reasoning

    Google Scholar 

  8. Graves, A., Lalmas, M.: Video retrieval using an MPEG-7 based inference network. In: Proceedings of the 25th ACM–SIGIR Conference, pp. 339–346 (2002)

    Google Scholar 

  9. Kazai, G., Lalmas, M., Reid, J.: The Shakespeare test collection, Available at http://qmir.dcs.qmul.ac.uk/Focus/resources2.htm

  10. Lalmas, M., Ruthven, I.: Representing and retrieving structured documents with Dempster-Shafer’s theory of evidence: Modelling and evaluation. Journal of Documentation 54(5), 529–565 (1998)

    Article  Google Scholar 

  11. Myaeng, S.H., Jang, D.H., Kim, M.S., Zhoo, Z.C.: A flexible model for retrieval of SGML documents. In: Proceedings of the 21th ACM–SIGIR Conference, pp. 138–145 (1998)

    Google Scholar 

  12. Piwowarski, B., Faure, G.E., Gallinari, P.: Bayesian networks and INEX. In: Proceedings of the INEX Workshop, pp. 7–12 (2002)

    Google Scholar 

  13. Ribeiro-Neto, B.A., Muntz, R.R.: A belief network model for IR. In: Proceedings of the 19th ACM–SIGIR Conference, pp. 253–260 (1996)

    Google Scholar 

  14. Roelleke, T., Lalmas, M., Kazai, G., Ruthven, I., Quicker, S.: The accessibility dimension for structured document retrieval. In: Crestani, F., Girolami, M., van Rijsbergen, C.J.K. (eds.) ECIR 2002. LNCS, vol. 2291, pp. 284–302. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York (1983)

    MATH  Google Scholar 

  16. Turtle, H.R., Croft, W.B.: Evaluation of an inference network-based retrieval model. Information Systems 9(3), 187–222 (1991)

    Google Scholar 

  17. Vegas, J., de la Fuente, P., Crestani, F.: A graphical user interface for structured document retrieval. In: Crestani, F., Girolami, M., van Rijsbergen, C.J.K. (eds.) ECIR 2002. LNCS, vol. 2291, pp. 268–283. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crestani, F., de Campos, L.M., Fernández-Luna, J.M., Huete, J.F. (2003). A Multi-layered Bayesian Network Model for Structured Document Retrieval. In: Nielsen, T.D., Zhang, N.L. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2003. Lecture Notes in Computer Science(), vol 2711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45062-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45062-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40494-1

  • Online ISBN: 978-3-540-45062-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics