Skip to main content

Better Group Behaviors Using Rule-Based Roadmaps

  • Chapter

Part of the Springer Tracts in Advanced Robotics book series (STAR,volume 7)

Abstract

While techniques exist for simulating group behaviors, these methods usually only provide simplistic navigation and planning capabilities. In this work, we explore the benefits of integrating roadmap-based path planning methods with flocking techniques. We show how group behaviors such as exploring can be facilitated by using dynamic roadmaps (e.g., modifying edge weights) as an implicit means of communication between flock members. Extending ideas from cognitive modeling, we embed behavior rules in individual flock members and in the roadmap. These behavior rules enable the flock members to modify their actions based on their current location and state. We propose new techniques for three distinct group behaviors: homing, exploring (covering and goal searching) and passing through narrow areas. Animations of these behaviors can be viewed at http://parasol.tamu.edu/dsmft.

Keywords

  • Edge Weight
  • Group Behavior
  • Narrow Passage
  • Homing Behavior
  • Behavior Rule

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-45058-0_7
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-45058-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Balch and M. Hybinette. Social potentials for scalable multirobot formations. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 73–80, 2000.

    Google Scholar 

  2. O. B. Bayazit, J.-M. Lien, and Nancy M. Amato. Better group behaviors in complex environments using global roadmaps. In Artif. Life, Dec 2002. To appear.

    Google Scholar 

  3. D. C. Brogan and J. K. Hodgins. Group behaviors for systems with significant dynamics. In Autonomous Robots, pages 137–153, 1997.

    Google Scholar 

  4. T. Fukuda, H. Mizoguchi, K. Sekiyama, and F. Arai. Group behavior control for MARS (micro autonomous robotic system). In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 1550–1555, 1999.

    Google Scholar 

  5. J. Funge, X. Tu, and D. Terzopoulos. Cognitive modeling: Knowledge, reasoning and planning for intelligent characters. In Computer Graphics, pages 29–38, 1999.

    Google Scholar 

  6. O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot Res., 5 (l): 90–98, 1986.

    CrossRef  MathSciNet  Google Scholar 

  7. J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA, 1991.

    CrossRef  Google Scholar 

  8. T. Y. Li, Y. J. Jeng, and S. I. Chang. Simulating virtual human crowds with a leader-follower model. In Proceedings of 2001 Computer Animation Conference, 2001.

    Google Scholar 

  9. Dorigo M., G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete optimization. In Artificial Life, pages 137–172, 1999.

    Google Scholar 

  10. M. J. Mataric. Interaction and Intelligent Behavior. PhD thesis, MIT EECS, 1994.

    Google Scholar 

  11. S.I. Nishimura and T. Ikegami. Emergence of collective strategies in prey-predator game model. Artif. Life, 3: 243–260, 1997.

    CrossRef  Google Scholar 

  12. L. E. Parker. Designing control laws for cooperative agent teams. In IEEE International Conference on Robotics and Automation, pages 582–587, 1993.

    CrossRef  Google Scholar 

  13. C. W. Reynolds. Flocks, herds, and schools: A distributed behaviroal model. In Computer Graphics, pages 25–34, 1987.

    Google Scholar 

  14. C. W. Reynolds. Steering behaviors for autonomous characters. In Game Developers Conference, 1999.

    Google Scholar 

  15. Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 1th edition, 1994.

    Google Scholar 

  16. N. Saiwaki, T. Komatsu, T. Yoshida, and S. Nishida. Automatic generation of moving crowd using chaos model. In IEEE Int. Conference on System, Man and Cybernetics, pages 3715–3721, 1997.

    Google Scholar 

  17. S.-J. Sun and D.-W Lee K.-B. Sim. Artificial immune-based swarm behaviors of distributed autonomous robotic systems. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 3993–3998, 2001.

    Google Scholar 

  18. X. Tu and D. Terzopoulos. Artificial fishes: Physics, locomotion, perception, behavior. In Computer Graphics, pages 24–29, 1994.

    Google Scholar 

  19. R. T. Vaughan, N. Sumpter, J. Henderson, A. Frost, and S. Cameron. Experiments in automatic flock control. J. Robot, and Autonom. Sys., 31: 109–117, 2000.

    CrossRef  Google Scholar 

  20. C.R. Ward, F. Gobet, and G. Kendall. Evolving collective behavior in an artificial ecology. Artif. Life, 7: 191–209, 2001.

    CrossRef  Google Scholar 

  21. S. A. Wilmarth, N. M. Amato, and P. F. Stiller. MAPRM: A probabilistic roadmap planner with sampling on the medial axis of the free space. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 1024–1031, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bayazit, O.B., Lien, JM., Amato, N.M. (2004). Better Group Behaviors Using Rule-Based Roadmaps. In: Boissonnat, JD., Burdick, J., Goldberg, K., Hutchinson, S. (eds) Algorithmic Foundations of Robotics V. Springer Tracts in Advanced Robotics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45058-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45058-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07341-0

  • Online ISBN: 978-3-540-45058-0

  • eBook Packages: Springer Book Archive