Keywords
- Data Linkage
- Complexity Measure
- Record Linkage
- True Match
- Matching Weight
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Baeza-Yates RA, Ribeiro-Neto B. Modern information retrieval. AddisonWesley Longman Publishing Co., Boston, 1999.
Bass J. Statistical linkage keys: How effective are they? In Symposium on Health Data Linkage, Sydney, 2002. Available online at: http://www.publichealth.gov.au/symposium.html.
Baxter R, Christen P, Churches T. A comparison of fast blocking methods for record linkage. In Proceedings of ACM SIGKDD workshop on Data Cleaning, Record Linkage and Object Consolidation, pages 25-27, Washington DC, 2003.
Bertolazzi P, De Santis L, Scannapieco M. Automated record matching in cooperative information systems. In Proceedings of the international workshop on data quality in cooperative information systems, Siena, Italy, 2003.
Bertsekas DP. Auction algorithms for network flow problems: A tutorial introduction. Computational Optimization and Applications, 1:7-66, 1992.
Bilenko M, Mooney RJ. Adaptive duplicate detection using learnable string similarity measures. In Proceedings of ACM SIGKDD, pages 39-48, Washington DC, 2003.
Bilenko M, Mooney RJ. On evaluation and training-set construction for duplicate detection. In Proceedings of ACM SIGKDD workshop on Data Cleaning, Record Linkage and Object Consolidation, pages 7-12, Washington DC, 2003.
Blakely T, Salmond C. Probabilistic record linkage and a method to calculate the positive predictive value. International Journal of Epidemiology, 31:6:1246-1252,2002.
Centre for Epidemiology and Research, NSW Department of Health. New South Wales mothers and babies 2001. NSW Public Health Bull, 13:S-4, 2001.
Chaudhuri S, Ganjam K, Ganti V, Motwani R. Robust and efficient fuzzy match for online data cleaning. In Proceedings of ACM SIGMOD, pages 313-324, San Diego, 2003.
Chaudhuri S, Ganti V, Motwani R. Robust identification of fuzzy duplicates. In Proceedings of the 21st international conference on data engineering (ICDE’05), pages 865-876, Tokyo, 2005.
Christen P, Churches T, Hegland M. Febrl - a parallel open source data linkage system. In Proceedings of the 8th PAKDD, Springer LNAI 3056, pages 638-647, Sydney, 2004.
Churches T, Christen P, Lim K, Zhu JX. Preparation of name and address data for record linkage using hidden markov models. BioMed Central Medical Informatics and Decision Making, 2(9), 2002. Available online at: http://www.biomedcentral.com/1472-6947/2/9/.
Cohen WW. Integration of heterogeneous databases without common domains using queries based on textual similarity. In Proceedings of ACM SIGMOD, pages 201-212, Seattle, 1998.
Cohen WW, Ravikumar P, Fienberg SE. A comparison of string distance metrics for name-matching tasks. In Proceedings of IJCAI-03 workshop on information integration on the Web (IIWeb-03), pages 73-78, Acapulco, 2003.
Cohen WW, Richman J. Learning to match and cluster large high-dimensional data sets for data integration. In Proceedings of ACM SIGKDD, pages 475-480, Edmonton, 2002.
Cooper WS, Maron ME. Foundations of probabilistic and utility-theoretic indexing. Journal of the ACM, 25(1):67-80, 1978.
Elfeky MG, Verykios VS, Elmagarmid AK. TAILOR: A record linkage toolbox. In Proceedings of ICDE, pages 17-28, San Jose, 2002.
Fawcett T. ROC Graphs: Notes and practical considerations for researchers. Technical Report HPL-2003-4, HP Laboratories, Palo Alto, 2004.
Fellegi I, Sunter A. A theory for record linkage. Journal of the American Statistical Society, 64(328):1183-1210, 1969.
Galhardas H, Florescu D, Shasha D, Simon E. An extensible framework for data cleaning. In Proceedings of ICDE, page 312, 2000.
Gill L. Methods for automatic record matching and linking and their use in national statistics. Technical Report National Statistics Methodology Series, no 25, National Statistics, London, 2001.
Gomatam S, Carter R, Ariet M, Mitchell G. An empirical comparison of record linkage procedures. Statistics in Medicine, 21(10):1485-1496, 2002.
Gu L, Baxter R. Adaptive filtering for efficient record linkage. In SIAM international conference on data mining, Orlando, 2004.
Gu L, Baxter R. Decision models for record linkage. In Proceedings of the 3rd Australasian data mining conference, pages 241-254, Cairns, 2004.
Hernandez MA, Stolfo SJ. The merge/purge problem for large databases. In Proceedings of ACM SIGMOD, pages 127-138, San Jose, 1995.
Hernandez MA, Stolfo SJ. Real-world data is dirty: Data cleansing and the merge/purge problem. Data Mining and Knowledge Discovery, 2(1):9-37, 1998.
Kelman CW, Bass AJ, Holman CD. Research use of linked health data - a best practice protocol. Aust NZ Journal of Public Health, 26:251-255, 2002.
Lee ML, Ling TW, Low WL. IntelliClean: a knowledge-based intelligent data cleaner. In Proceedings of ACM SIGKDD, pages 290-294, Boston, 2000.
Maletic JI, Marcus A. Data cleansing: beyond integrity analysis. In Proceedings of the Conference on Information Quality (IQ2000), pages 200-209, Boston, 2000.
MatchWare Technologies. AutoStan and AutoMatch, User’s Manuals. Kenneb-unk, Maine, 1998.
McCallum A, Nigam K, Ungar LH. Efficient clustering of high-dimensional data sets with application to reference matching. In Proceedings of ACM SIGKDD, pages 169-178, Boston, 2000.
Monge A, Elkan C. The field-matching problem: Algorithm and applications. In Proceedings of ACM SIGKDD, pages 267-270, Portland, 1996.
Nahm UY, Bilenko M, Mooney RJ. Two approaches to handling noisy variation in text mining. In Proceedings of the ICML-2002 workshop on text learning (TextML’2002), pages 18-27, Sydney, 2002.
Newcombe HB, Kennedy JM. Record linkage: making maximum use of the discriminating power of identifying information. Communications of the ACM, 5(11):563-566, 1962.
Newman DJ, Hettich S, Blake CL, Merz CJ. UCI repository of machine learning databases, 1998. URL: http://www.ics.uci.edu/∼mlearn/MLRepository.html.
Porter E, Winkler WE. Approximate string comparison and its effect on an advanced record linkage system. Technical Report RR97/02, US Bureau of the Census, 1997.
Pyle D. Data preparation for data mining. Morgan Kaufmann Publishers, San Francisco, 1999.
Rahm E, Do HH. Data cleaning: problems and current approaches. IEEE Data Engineering Bulletin, 23(4):3-13, 2000.
Ravikumar P, Cohen WW. A hierarchical graphical model for record linkage. In Proceedings of the 20th conference on uncertainty in artificial intelligence, pages 454-461, Banff, Canada, 2004.
Salzberg S. On comparing classifiers: pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery, 1(3):317-328, 1997.
Sarawagi S, Bhamidipaty A. Interactive deduplication using active learning. In Proceedings of ACM SIGKDD, pages 269-278, Edmonton, 2002.
Shearer C. The CRISP-DM model: The new blueprint for data mining. Journal of Data Warehousing, 5(4):13-22, 2000.
Smith ME, Newcombe HB. Accuracies of computer versus manual linkages of routine health records. Methods of Information in Medicine, 18(2):89-97, 1979.
Tejada S, Knoblock CA, Minton S. Learning domain-independent string transformation weights for high accuracy object identification. In Proceedings of ACM SIGKDD, pages 350-359, Edmonton, 2002.
Winkler WE. Using the EM algorithm for weight computation in the FellegiSunter model of record linkage. Technical Report RR00/05, US Bureau of the Census, 2000.
Winkler WE. Methods for record linkage and Bayesian networks. Technical Report RR2002/05, US Bureau of the Census, 2002.
Winkler WE. Overview of record linkage and current research directions. Technical Report RR2006/02, US Bureau of the Census, 2006.
Winkler WE, Thibaudeau Y. An application of the Fellegi-Sunter model of record linkage to the 1990 U.S. decennial census. Technical Report RR91/09, US Bureau of the Census, 1991.
Yancey WE. BigMatch: a program for extracting probable matches from a large file for record linkage. Technical Report RRC2002/01, US Bureau of the Census, 2002.
Yancey WE. An adaptive string comparator for record linkage. Technical Report RR2004/02, US Bureau of the Census, 2004.
Zhu JJ, Ungar LH. String edit analysis for merging databases. In KDD workshop on text mining, held at ACM SIGKDD, Boston, 2000.
Zingmond DS, Ye Z, Ettner SL, Liu H. Linking hospital discharge and death records - accuracy and sources of bias. Journal of Clinical Epidemiology, 57:21-29,2004.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Christen, P., Goiser, K. (2007). Quality and Complexity Measures for Data Linkage and Deduplication. In: Guillet, F.J., Hamilton, H.J. (eds) Quality Measures in Data Mining. Studies in Computational Intelligence, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44918-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-44918-8_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44911-9
Online ISBN: 978-3-540-44918-8
eBook Packages: EngineeringEngineering (R0)