Skip to main content

Aerodynamic Design of Transonic Adaptive Airfoils with Natural Transition

  • Conference paper
  • First Online:
Flow Modulation and Fluid—Structure Interaction at Airplane Wings

Summary

To increase the aerodynamic performance of airfoils at different transonic flight conditions computational and experimental investigations for an airfoil with an adaptive upper side geometry were initiated. The main objective is to improve the lift-to-drag ratio by adapting the upper airfoil surface using numerical optimization such that the extent of the laminar boundary layer is enlarged without the occurrence of a separation bubble. Unlike in most airfoil optimization procedures the transition location is not fixed but is determined numerically using the semi-empirical e N-method based on the linear stability theory. To verify the numerical results it is necessary to perform experiments with natural transition on a laminar-type airfoil at transonic mean flow conditions. The transition location and the separation area are determined at transonic speeds in the trisonic wind tunnel with an adaptive wall test section using the hot-film method with a 20 sensor array as well as the liquidcrystal technique. The methods will also be applied to a future airfoil model with an adaptive upper side geometry to experimentally verify the result of the numerical optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abstiens, S. Fühling, and W. Schröder. Boundary-layer measurements on the ELAC configuration at Re = 20 × 106. In ICTAM 2000 Chicago, 2000.

    Google Scholar 

  2. D. Ackley. A Connectionist Machine for Genetic Hillclimbing. Kluwer Academic Publishers, 1987.

    Book  Google Scholar 

  3. T. Bäck and H.-P. Schwefel. An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation, 1(1):1–23, 1993.

    Article  Google Scholar 

  4. M. Drela and M. B. Giles. Viscous-inviscid analysis of transonic and low Reynolds number airfoils. AIAA J., 25(10):1347–1355, Oct. 1987.

    Article  Google Scholar 

  5. S. Fühling. Untersuchung transitioneller, ablösender und gestörter Grenzschichten mit der Multisensor-Heißfilmtechnik. PhD thesis, Aerodyn. Inst. RWTH Aachen, 2000.

    Google Scholar 

  6. E. Greif. Aerodynamic design for a new regional aircraft. In 17th ICAS Congress, Stockholm, Sweden, ICAS-90–3.5.3, Sept. 1990.

    Google Scholar 

  7. M. Komberger and F. Feyzi. Transitionsbestimmung mit MultisensorHeißfilmmeßtechnik in Windkanal und Freiflug. DGLR-Report, 90–06:76–80, 1990.

    Google Scholar 

  8. E Kursawe and H.-P. Schwefel. Künstliche Evolution als Modell für natürliche Intelligenz. In A. v. Gleich, editor, Bionik — Ökologische Technik nach dem Vorbild der Natur?, pages 65–89. Teubner, Stuttgart, 1998.

    Google Scholar 

  9. L. M. Mack. Transition prediction and linear stability theory. AGARD Conf. Proc. 224, AGARD, 1977.

    Google Scholar 

  10. A. Meijering and W. Schröder. Experimental analysis of separated, transitional transonic airfoil flow. In 31st AIAA Fluid Dynamics Conference, Anaheim, AIAA 2001–2987, June 2001.

    Book  Google Scholar 

  11. Z. Michalewicz, D. Dasgupta, R. Le Riche, and M. Schoenauer. Evolutionary algorithms for constrained engineering problems. Computers & Industrial Engineering Journal, 30(2):851–870, September 1996.

    Article  Google Scholar 

  12. B. Naujoks, L. Willmes, W. Haase, T. Bäck, and M. Schütz. Multi point airfoil optimization using evolution strategies. In ECCOMAS 2000, Barcelona, 11–14. Sept. 2000. Wiley & Sons Ltd, Chichester.

    Google Scholar 

  13. A. Oyama, S. Obayashi, and K. Nakahashi. Wing design using real-coded adaptive range genetic algorithm. In Proc. of IEEE Int. Conf. on System, Man, and Cybernetics, Tokyo, 12.–15. Oct. 1999.

    Book  Google Scholar 

  14. H. H. Pearcey, J. Osborne, and A. B. Haines. The interaction between local effects at the shock and rear separation — a source of significant scale effects in wind-tunnel tests on aerofoils and wings. AGARD Conf. Proc., 35:11–1 — 11–23, 1968.

    Google Scholar 

  15. J. Periaux, B. Mantel, M. Sefrioui, B. Stoufflet, J. Desideri, S. Lanteri, and N. Marco. Evolutionary computational methods for complex design in aerodynamics. AIAA Paper 98–0222, 1998.

    Google Scholar 

  16. I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart, 1973.

    Google Scholar 

  17. J. P. Robert. Drag Reduction: An Industrial Challenge. In AGARD Special Coarse on Skin Friction Drag Reduction, volume 786, pages 2–1 — 2–15, 1992.

    Google Scholar 

  18. H.-P. Schwefel. Evolutionsstrategie und numerische Optimierung. PhD thesis, TU Berlin, 1975.

    Google Scholar 

  19. H.-P. Schwefel and T. Bäck. Künstliche Evolution — eine intelligente Problemlösungsstrategie? KI — Künstliche Intelligenz, 6(2):20–27, 1992.

    Google Scholar 

  20. A. M. O. Smith and N. Gamberoni. Transition, pressure gradient and stability theory. TR ES 26388, Douglas Aircraft Co., 1956.

    Google Scholar 

  21. J. P. Stack, S. M. Mangalam, and S. A. Berry. A unique measurement technique to study laminar-separation bubble characteristics on an airfoil. AIAA Paper 87–1271, 1987.

    Book  Google Scholar 

  22. E. Stanewsky. Wechselwirkung zwischen Außenströmung und Grenzschicht an transsonischen Profilen. PhD thesis, TU Berlin, 1981.

    Google Scholar 

  23. G. N. Vanderplaats. Numerical Optimization techniques for engineering design. McGraw-Hill, New York, 1984.

    MATH  Google Scholar 

  24. J. L. van Ingen. A suggested semi-empirical method for the calculation of the boundary layer transition region. Rep. VTH-74, TU Delft, 1956.

    Google Scholar 

  25. D. Whitley, K. Mathias, S. Rana, and J. Dzubera. Evaluating evolutionary algorithms. Artificial Intelligence, 85:245–276, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meijering, A., Limberg, W., Schröder, W. (2003). Aerodynamic Design of Transonic Adaptive Airfoils with Natural Transition. In: Ballmann, J. (eds) Flow Modulation and Fluid—Structure Interaction at Airplane Wings. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44866-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44866-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53613-7

  • Online ISBN: 978-3-540-44866-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics