Advertisement

Graphite as a Highly Correlated Electron Liquid

  • Yakov Kopelevich
  • Pablo Esquinazi
  • José Henrique Spahn Torres
  • Robson Ricardo da Silva
  • Heiko Kempa
Chapter
Part of the Advances in Solid State Physics book series (ASSP, volume 43)

Abstract

Although a considerable amount of research work has been done on graphite, its physical properties are still not well understood. In the present paper we review recent reports on the occurrence of magnetic-field-driven metal-insulator and insulator-metal transitions, as well as the quantum Hall effect (QHE) in graphite. The experimental results suggest that the low field (∼ 1 kOe) metal-insulator transition is associated with the transition between Bose metal and excitonic insulator states. On the other hand, the reentrant insulator-metal transition which takes place at higher fields can consistently be understood assuming the occurrence of superconducting correlations caused by the Landau level quantization. We argue that the QHE, observed only for strongly anisotropic quasi-two-dimensional (2D) graphite samples, and superconducting correlations may represent the same phenomenon, implying that Cooper pairs in the quasi-2D samples form a highly correlated boson liquid.

Keywords

Graphene Plane Landau Level Dirac Fermion Graphite Sample Hall Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Authors and Affiliations

  • Yakov Kopelevich
    • 1
  • Pablo Esquinazi
    • 2
  • José Henrique Spahn Torres
    • 1
  • Robson Ricardo da Silva
    • 1
  • Heiko Kempa
    • 2
  1. 1.Instituto de Física “Gleb Wataghin”Universidade Estadual de CampinasSão PauloBrasil
  2. 2.Abteilung Supraleitung und Magnetismus, Institut für Experimentelle Physik IIUniversität LeipzigLeipzigGermany

Personalised recommendations