Skip to main content

A Set-Theoretic View of Belief Functions

Logical Operations and Approximations by Fuzzy Sets

  • Chapter

Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ,volume 219)

Abstract

A body of evidence in the sense of Shafer can be viewed as an extension of a probability measure, but as a generalized set as well. In this paper we adopt the second point of view and study the algebraic structure of bodies of evidence on a set, based on extended set union, intersection and complementation. Several notions of inclusion are exhibited and compared to each other. Inclusion is used to compare a body of evidence to the product of its projections. Lastly, approximations of a body of evidence under the form of fuzzy sets are derived, in order to squeeze plausibility values between two grades of possibility. Through all the paper, it is pointed out that a body of evidence can account for conjunctive as well as a disjunctive information, i.e. the focal elements can be viewed either as sets of actual values or as restrictions on the (unique) value of a variable.

Keywords

  • Theory of evidence
  • Possibility measure
  • Fuzzy set
  • Knowledge representation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-44792-4_14
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-44792-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   399.99
Price excludes VAT (USA)
Hardcover Book
USD   399.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. P. Dempster, “Upper and lower probabilities induced by a multivalued mapping.” Annals of Mathematical Statistics, 38, 1967, pp. 325–339.

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York, 1980.

    MATH  Google Scholar 

  3. D. Dubois and H. Prade, “Additions of interactive fuzzy numbers,” IEEE Trans. on Automatic Control, 26, 1981, 926–936.

    CrossRef  MathSciNet  Google Scholar 

  4. D. Dubois and H. Prade, “On several representations of an uncertain body of evidence,” Fuzzy Information and Decision Processes, edited by M. M. Gupta, E. Sanchez, North-Holland, Amsterdam, 1982, pp. 167–181.

    Google Scholar 

  5. D. Dubois and H. Prade, “Unfair coins and necessity measures. Towards a possibilistic interpretation of histograms.” Fuzzy Sets and Systems, 10, 1983, pp. 15–20.

    MATH  CrossRef  MathSciNet  Google Scholar 

  6. D. Dubois and H. Prade, “Fuzzy sets and statistical data,” European Journal of Operational Research, 25(3), 1986, 345–356.

    MATH  CrossRef  MathSciNet  Google Scholar 

  7. D. Dubois and H. Prade, Théorie des Possibilités. Applications à la Représentation des Connaissances en Informatique, Masson, Paris, 1985.

    Google Scholar 

  8. D. Dubois and H. Prade, “A review of fuzzy set aggregation connectives,” Information Sciences, 36, 1985, pp. 85–121.

    MATH  CrossRef  MathSciNet  Google Scholar 

  9. D. Dubois and H. Prade, “Additivity and monotonicity of measures of information defined in the setting of Shafer’s evidence theory.” BUSEFAL (Université P. Sabatier, Toulouse), No. 24, 1985, pp. 64–76.

    MATH  Google Scholar 

  10. D. Dubois, R. Giles and H. Prade, “On the unicity of Dempster’s rule of combination.” International Journal of Intelligent Systems, 1(2), 1986, 133–142.

    MATH  CrossRef  Google Scholar 

  11. L. R. Ford, Jr., D. R. Fulkerson, Flows in Networks. Princeton University Press, Princeton, N.J., 1962.

    MATH  Google Scholar 

  12. R. Fortet and M. Kambouzia, “Ensembles aléatoires et ensembles flous,” Publications Econométriques, IX, fascicule 1, 1976, pp. 1–23.

    MathSciNet  Google Scholar 

  13. I. R. Goodman, “Fuzzy sets as equivalence classes of random sets.” In: Fuzzy Set and Possibility Theory: Recent Developments, edited by R. R. Yager, Pergamon Press, Oxford, 1982, pp. 327–342.

    Google Scholar 

  14. I. R. Goodman, “Characterization of n-ary fuzzy set operations which induce homomorphic random set operations,” In: Fuzzy Information and Decision Processes, edited by M. M. Gupta and E. Sanchez, North-Holland, Amsterdam, 1982, pp. 203–212.

    Google Scholar 

  15. M. Higashi and G. Klir, “Measures of uncertainty and information based on possibility distributions.” International Journal of General Systems, 9, 1983, pp. 43–58.

    CrossRef  Google Scholar 

  16. U. Höhle, “Fuzzy filters: a generalization of credibility measures.” Proc. IF AC Symposium on Fuzzy Information, Knowledge Representation, and Decision Analysis, Marseille, June 1983, pp. 111–114.

    Google Scholar 

  17. J. Kampé de Feriet, “Interpretation of membership functions of fuzzy sets in terms of plausibility and belief.” In: Fuzzy Information and Decision Processes, edited by M. M. Gupta and E. Sanchez, North-Holland, Amsterdam, 1982, pp. 93–98.

    Google Scholar 

  18. D. H. Kranz, R. D. Luce, R. Suppes and A. Tversky, Foundations of Measurement. Vol. I, Academic Press, New York, 1971.

    Google Scholar 

  19. H. T. Nguyen, “On random sets and belief functions.” Journal of Mathematical Analysis and Applications, 65, 1978, pp. 531–542.

    MATH  CrossRef  MathSciNet  Google Scholar 

  20. E. M. Oblow, “A hybrid uncertainty theory,” Proc. 5th International Workshop: “Expert Systems and their Applications,” Avignon, May 13–15, 1985, pp. 1193–1201, published by ADI Paris.

    Google Scholar 

  21. H. Prade and C. Testemale, “Representation of soft constraints and fuzzy attribute values by means of possibility distributions in databases.” In: The Analysis of Fuzzy Information, edited by J. C. Bezdek, CRC Press, Boca Raton, Fl., 1986, to appear, Vol. II.

    Google Scholar 

  22. T. Sales, “Fuzzy sets as set classes,” Stochastica (Barcelona, Spain), VI, 1982, pp. 249–264.

    Google Scholar 

  23. B. Schweizer and A. Sklar, “Associative functions and abstract semi-groups.” Publicationes Mathematicae Debrecen, 10, 1963, pp. 69–81.

    MathSciNet  Google Scholar 

  24. G. Shafer, A Mathematical Theory of Evidence. Princeton University Press, Princeton, N.J., 1976.

    MATH  Google Scholar 

  25. G. Shafer, Belief Functions and Possibility Measures, Working Paper No. 163, School of Business, The University of Kansas, Lawrence, 1984.

    Google Scholar 

  26. P. Walley and T. Fine, “Towards a frequentist theory of upper and lower probability.” The Annals of Statistics, 10, 1982, pp. 741–761.

    MATH  CrossRef  MathSciNet  Google Scholar 

  27. Wang Pei-Zhuang, “From the fuzzy statistics to the falling random subsets.” In: Advances in Fuzzy Sets, Possibility Theory and Applications, edited by P. P. Wang, Plenum Press, New York, 1983, pp. 81–96.

    Google Scholar 

  28. Wang Pei-Zhuang and E. Sanchez, “Treating a fuzzy subset as a projectable random subset.” In: Fuzzy Information and Decision Processes, edited by M. M. Gupta and E. Sanchez, North-Holland, Amsterdam, 1982, pp. 213–220.

    Google Scholar 

  29. R. R. Yager, “Hedging in the combination of evidence.” Journal of Information and Optimization Science, 4, No. 1, pp. 73–81, 1983.

    MATH  MathSciNet  Google Scholar 

  30. R. R. Yager, “Entropy and specificity in a mathematical theory of evidence.” Int. Journal of General Systems, 9, 1983, pp. 249–260.

    CrossRef  MathSciNet  MATH  Google Scholar 

  31. R. R. Yager, “On different classes of linguistic variables defined via fuzzy subsets,” Kybernetes, 13, 1984, pp. 103–110.

    MATH  MathSciNet  Google Scholar 

  32. R. R. Yager, “Arithmetic and other operations on Dempster–Shafer structures,” Tech. Report MII-508, Iona College, New Rochelle, N.Y., 1985.

    Google Scholar 

  33. R. R. Yager, The entailment principle for Dempster–Shafer granule,” Tech. Report MII-512, Iona College, New Rochelle, N.Y., 1985.

    Google Scholar 

  34. R. R. Yager, Reasoning with uncertainty in expert systems.” Proc. 9th Int. Joint Conf. on Artificial Intelligence, Los Angeles, 1985, pp. 1295–1297.

    Google Scholar 

  35. L. A. Zadeh, “Fuzzy sets,” Information and Control, 8, 1965, pp. 338–353.

    MATH  CrossRef  MathSciNet  Google Scholar 

  36. L. A. Zadeh, “Calculus of fuzzy restrictions.” In: Fuzzy Sets and their Applications to Cognitive and Decision Processes, edited by L. A. Zadeh, K. S. Fu, K. Tanaka, M. Shimura, Academic Press, New York, 1975, pp. 1–39.

    Google Scholar 

  37. L. A. Zadeh, “PRUF: A meaning representation language for natural languages.” Int. J. Man–Machine Studies, 10, 1978, pp. 395–460.

    MATH  MathSciNet  CrossRef  Google Scholar 

  38. L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility.” Fuzzy Sets and Systems, 1, 1978, pp. 3–28.

    MATH  CrossRef  MathSciNet  Google Scholar 

  39. L.A. Zadeh, “A theory of approximate reasoning.” In: Machine Intelligence, Vol. 9, edited by J. Hayes, D. Michie and L. I. Mikulich, John Wiley, New York, 1979, pp. 149–194.

    Google Scholar 

  40. L. A. Zadeh, “Fuzzy sets and information granularity.” In: Advances in Fuzzy Set Theory and Applications, edited by M. M. Gupta, R. K. Ragade and R. R. Yager, North-Holland, Amsterdam, 1979, pp. 3–18.

    Google Scholar 

  41. L. A. Zadeh, “On the validity of Dempster’s rule of combination of evidence.” Memo UCB/ERL No. 79/24, University of California, Berkeley, 1979.

    Google Scholar 

  42. L. A. Zadeh, “A simple view of the Dempster–Shafer theory of evidence,” Berkeley Cognitive Science Report No. 27, University of California, Berkeley, 1984.

    Google Scholar 

  43. Zhang Nan-Lun, “A preliminary study of the theoretical basis of the fuzzy set.” BUSEFAL (Univ. P. Sabatier, Toulouse), No. 19, 1984, pp. 58–67.

    Google Scholar 

  44. Zhang Nan-Lun, “The membership and probability characteristics of random appearance,” Journal of Wuhan Institute of Building Materials, No. 1, 1981.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dubois, D., Prade, H. (2008). A Set-Theoretic View of Belief Functions. In: Yager, R.R., Liu, L. (eds) Classic Works of the Dempster-Shafer Theory of Belief Functions. Studies in Fuzziness and Soft Computing, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44792-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44792-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25381-5

  • Online ISBN: 978-3-540-44792-4

  • eBook Packages: EngineeringEngineering (R0)