Skip to main content

Entropy and Specificity in a Mathematical Theory of Evidence

  • Chapter

Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ,volume 219)

Abstract

We review Shafer’s theory of evidence. We then introduce the concepts of entropy and specificity in the framework of Shafer’s theory. These become complementary aspects in the indication of the quality of evidence.

Keywords

  • Entropy
  • Fuzzy sets
  • Specificity
  • Belief
  • Plausibility

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-44792-4_11
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-44792-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   399.99
Price excludes VAT (USA)
Hardcover Book
USD   399.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Shafer, A Mathematical Theory of Evidence. Princeton University Press, Princeton, 1976.

    Google Scholar 

  2. L. A. Zadeh, “On the validity of Dempster’s rule of combination of evidence.” Memo No. ERL M79/24, U. of California, Berkeley, 1979.

    Google Scholar 

  3. H. Prade, “On the link between Dempster’s rule of combination of evidence and fuzzy set intersection.” Busefal, 8, 1981, pp. 60–64.

    Google Scholar 

  4. P. Smets, “Medical diagnosis: fuzzy sets and degrees of belief.” Fuzzy Sets and Systems, 5, 1981, pp. 259–266.

    Google Scholar 

  5. H. T. Nguyen, “On random sets and belief structures.” J. Math. Anal. and Appl., 65, 1978, pp. 531–542.

    MATH  CrossRef  MathSciNet  Google Scholar 

  6. L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility.” Fuzzy Sets and Systems, 1, 1978, pp. 3–28.

    MATH  CrossRef  MathSciNet  Google Scholar 

  7. A. I. Khinchin, Mathematical Foundations of Information Theory. Dover Publications, New York, 1957.

    Google Scholar 

  8. R. R. Yager, “Measuring tranquility and anxiety in decision making: An application of fuzzy sets.” Int. J. of General Systems, 8, 1982, pp. 139–146.

    MATH  CrossRef  MathSciNet  Google Scholar 

  9. R. R. Yager, “Measurement of properties of fuzzy sets and possibility distributions.” it Proc. Third International Seminar on Fuzzy Sets, Linz, 1981, pp. 211–222.

    Google Scholar 

  10. M. Higashi and G. J. Klir, “Measures of uncertainty and information based on possibility distributions.” Int. J. of General Systems, 9, No. 1, 1982, pp. 43–58.

    MATH  CrossRef  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yager, R.R. (2008). Entropy and Specificity in a Mathematical Theory of Evidence. In: Yager, R.R., Liu, L. (eds) Classic Works of the Dempster-Shafer Theory of Belief Functions. Studies in Fuzziness and Soft Computing, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44792-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44792-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25381-5

  • Online ISBN: 978-3-540-44792-4

  • eBook Packages: EngineeringEngineering (R0)