Regulated Nuclear Transport

  • Christoph Schüller
  • Helmut Ruis
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 35)


The regulated traffic of cargoes between nucleus and cytoplasm is now thought rather to be the rule than the exception in nuclear transport. The biological importance of regulated nuclear transport is intuitively suggestive. A fast transcriptional response may be produced by rapid nuclear import of a transcription factor. Backtransfer to the cytoplasm would cease transcriptional output and the factor can be re-used. This picture is oversimplified as only few thorough studies exist. It remains to be clarified how far regulation of nuclear transport contributes to cellular signal transduction and control of its downstream targets.


Nuclear Localization Signal Fission Yeast Nuclear Export Nuclear Import Nuclear Accumulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alepuz PM, Matheos D, Cunningham KW, Estruch F (1999) The Saccharomyces cerevisiae RanGTP-binding protein msn5p is involved in different signal transduction pathways. Genetics 153: 1219–1231PubMedGoogle Scholar
  2. Arenzana-Seisdedos F, Thompson J, Rodriguez MS, Bachelerie F, Thomas D, Hay RT (1995) Inducible nuclear expression of newly synthesized I kappa B alpha negatively regulates DNA-binding and transcriptional activities of NF-kappa B. Mol Cell Biol 15: 2689–2696PubMedGoogle Scholar
  3. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284: 770–776.PubMedCrossRefGoogle Scholar
  4. Bailey CH, Bartsch D, Kandel RR (1996) Toward a molecular definition of long-term memory storage. Proc Natl Acad Sci USA 93: 13445–13452PubMedCrossRefGoogle Scholar
  5. Banuett F (1998) Signalling in the yeasts: an informational cascade with links to the filamentous fungi. Microbiol Mol Biol Rev 62: 249–274PubMedGoogle Scholar
  6. Beals CR, Clipstone NA, Ho SN, Crabtree GR (1997a) Nuclear localization of NF-ATc by a calcineurin-dependent, cyclosporin-sensitive intramolecular interaction. Genes Dev 11: 824–834.PubMedCrossRefGoogle Scholar
  7. Beals CR, Sheridan CM, Turck CW, Gardner P, Crabtree GR (1997b) Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275: 1930–1934PubMedCrossRefGoogle Scholar
  8. Bi E, Pringle JR (1996) ZDS1 and ZDS2, genes whose products may regulate Cdc42p in Saccharomyces cerevisiae. Mol Cell Biol 16: 5264–5275Google Scholar
  9. Clapham DE (1995) Calcium signaling. Cell 80: 259–268PubMedCrossRefGoogle Scholar
  10. Collas P, Le Guellec K, Tasken K (1999) The A-kinase-anchoring protein AKAP95 is a multivalent protein with a key role in chromatin condensation at mitosis. J Cell Biol 147: 1167–1180PubMedCrossRefGoogle Scholar
  11. Colledge M, Scott JD (1999) AKAPs: from structure to function. Trends Cell Biol 9: 216–221PubMedCrossRefGoogle Scholar
  12. Cosma MP, Tanaka T, Nasmyth K (1999) Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97: 299–311PubMedCrossRefGoogle Scholar
  13. Cowley S, Paterson H, Kemp P, Marshall CJ (1994) Activation of MAP kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77: 841–852PubMedCrossRefGoogle Scholar
  14. Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025–1037PubMedCrossRefGoogle Scholar
  15. DeVit MJ, Johnston M (1999) The nuclear exportin Msn5 is required for nuclear export of the Migl glucose repressor of Saccharomyces cerevisiae. Curr Biol 9: 1231–1241PubMedCrossRefGoogle Scholar
  16. DeVit MJ, Waddle JA, Johnston M (1997) Regulated nuclear translocation of the Migl glucose repressor. Mol Biol Cell 8: 1603–1618.Google Scholar
  17. Eastman Q, Grosschedl R (1999) Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr Opin Cell Biol 11: 233–240PubMedCrossRefGoogle Scholar
  18. Eide T, Coghlan V, Orstavik S, Holsve C, Solverg R, Skalhegg BS, Lamb NJ, Langeberg L (1998) Molecular cloning, chromosomal localization, and cell cycle-dependent subcellular distribution of the A-kinase anchoring protein, AKAP95. Exp Cell Res 238: 305–316PubMedCrossRefGoogle Scholar
  19. Faux MC, Scott JD (1996) Molecular glue: kinase anchoring and scaffold proteins. Cell 85:9–12 Feldherr CM, Akin D (1993) Regulation of nuclear transport in proliferating and quiescent cells. Exp Cell Res 205: 179–186Google Scholar
  20. Ferrigno P, Posas F, Koepp D, Saito H, Silver PA (1998) Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1. EMBO J 17: 5606–5614PubMedCrossRefGoogle Scholar
  21. Freedman DA, Levine AJ (1998) Nuclear export is required for degradation of endogenous p53 by MDM 2 and human papillomavirus E6. Mol Cell Biol 18: 7288–7293PubMedGoogle Scholar
  22. Fukuda M, Gotoh I, Adachi M, Gotoh Y, Nishida E (1997) A novel regulatory mechanism in the mitogen-activated protein (MAP) kinase cascade. Role of nuclear export signal of MAP kinase. J Biol Chem 272: 32642–32648Google Scholar
  23. Gaits F, Russell P (1999) Active nucleocytoplasmic shuttling required for function and regulation of stress-activated kinase Spcl/Styl in fission yeast. Mol Biol Cell 10: 1395–1407PubMedGoogle Scholar
  24. Gaits F, Degols G, Shiozaki K, Russell P (1998) Phosphorylation and association with the transcription factor Atfl regulate localization of Spcl/Styl stress-activated kinase in fission yeast. Genes Dev 12: 1464–1473PubMedCrossRefGoogle Scholar
  25. Galcheva-Gargova Z, Derijard B, Wu IH, Davis RJ (1994) An osmosensing signal transduction pathway in mammalian cells. Science 265: 806–808PubMedCrossRefGoogle Scholar
  26. Gonzalez FA, Seth A, Raden DL, Bowman DS, Fay FS, Davis RJ (1993) Serum-induced translocation of mitogen-activated protein kinase to the cell surface ruffling membrane and the nucleus. J Cell Biol 122: 1089–1101PubMedCrossRefGoogle Scholar
  27. Görlich D, Dabrowski M, Bischoff FR, Kutay U, Bork P, Hartmann E, Prehn S, Izaurralde E (1997) A novel class of RanGTP binding proteins. J Cell Biol 138: 65–80PubMedCrossRefGoogle Scholar
  28. Görner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G, Hamilton B, Ruis H, Schuller C (1998) Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12: 586–97.PubMedCrossRefGoogle Scholar
  29. Görner W, Schuller C, Ruis H (1999) Being at the right place at the right time: the role of nuclear transport in dynamic transcriptional regulation in yeast. Biol Chem 380: 147–150PubMedCrossRefGoogle Scholar
  30. Griffioen G, Anghileri P, Imre E, Baroni MD, Ruis H (2000) Nutritional control of nucleocytoplasmic localization of cAMP-dependent protein kinase catalytic and regulatory subunits in Saccharomyces cerevisiae. J Biol Chem 275: 1449–1456PubMedCrossRefGoogle Scholar
  31. Guiochon-Mantel A, Lescop P, Christin-Maitre S, Loosfelt H, Perrot-Applanat M, Milgrom E (1991) Nucleocytoplasmic shuttling of the progesterone receptor. EMBO J 10: 3851–3859PubMedGoogle Scholar
  32. Hache RI, Tse R, Reich T, Savory JG, Lefebvre YA (1999) Nucleocytoplasmic trafficking of steroidfree glucocorticoid receptor J Biol Chem 274: 1432–1439Google Scholar
  33. Han J, Lee JD, Bibbs L, Ulevitch RJ (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265: 808–811PubMedCrossRefGoogle Scholar
  34. Henderson BR, Eleftheriou A (2000) A comparison of the activity, sequence specificity, and CRM1-dependence of different nuclear export signals. Exp Cell Res 256: 213–24PubMedCrossRefGoogle Scholar
  35. Hopper AK (1999) Nucleocytoplasmic transport: inside out regulation. Curr Biol 9: R803 - R806PubMedCrossRefGoogle Scholar
  36. Hood JK, Silver PA (1999) In or out? Regulating nuclear transport. Curr Opin Cell Biol 11: 241–247PubMedCrossRefGoogle Scholar
  37. Huxford T, Huang DB, Malek S, Ghosh G (1998) The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell 95: 759–770PubMedCrossRefGoogle Scholar
  38. Ikuta T, Eguchi H, Tachibana T, Yoneda Y, Kawajiri K (1998) Nuclear localization and export signals of the human aryl hydrocarbon receptor. J Biol Chem 273: 2895–2904PubMedCrossRefGoogle Scholar
  39. Jaaro H, Rubinfeld H, Hanoch T, Seger R (1997) Nuclear translocation of a mitogen-activated protein kinase (MEK1) in response to mitogenic stimulation. Proc Natl Acad Sci USA 94: 3742–3747PubMedCrossRefGoogle Scholar
  40. Jacobs MD, Harrison SC (1998) Structure of an IkappaBalpha/NF-kappaB complex. Cell 95: 749–758PubMedCrossRefGoogle Scholar
  41. Kaffman A, O’Shea EK (1999) Regulation of nuclear localization: a key to a door. Annu Rev Cell Dev Biol 15: 291–339PubMedCrossRefGoogle Scholar
  42. Kaffman A, Herskowitz I, Tjian R, O’Shea EK (1994) Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80–PHO85. Science 263: 1153–1156PubMedCrossRefGoogle Scholar
  43. Kaffman A, Rank NM, O’Shea EK (1998a) Phosphorylation regulates association of the transcription factor Pho4 with its import receptor Psel/Kap121. Genes Dev 12: 2673–2683PubMedCrossRefGoogle Scholar
  44. Kaffman A, Rank NM, O’Neill, EM, Huang LS, O’Shea EK (1998b) The receptor MsnS exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature 396: 482–486PubMedCrossRefGoogle Scholar
  45. Kallio PJ, Okamoto K, O’Brien S, Carrero P, Makino Y, Tanaka H, Poellinger L (1998) Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-lalpha. EMBO J 17: 6573–6586PubMedCrossRefGoogle Scholar
  46. Kidd S, Lieber T, Young MW (1998) Ligand-induced cleavage and regulation of nuclear entry of Notch in Drosophila melanogaster embryos. Genes Dev 12: 3728–3740PubMedCrossRefGoogle Scholar
  47. Kircher S, Kozma-Bognar L, Kim L, Adam E, Harter K, Schafer E, Nagy F (1999) Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11: 1445–1456PubMedGoogle Scholar
  48. Kokhlatchev AV, Canagarajah B, Wilsbacher J, Robinson M, Atkinson M, Goldsmith E, Cobb MH (1998) Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93: 605–615CrossRefGoogle Scholar
  49. Komeili A, O’Shea EK (1999) Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 284: 977–980PubMedCrossRefGoogle Scholar
  50. Kong M, Barnes EA, 011endorff V, Donoghue DJ (2000) Cyclin F regulates the nuclear localization of cyclin B1 through a cyclin-cyclin interaction. EMBO J 19: 1378–1388PubMedCrossRefGoogle Scholar
  51. Krebber H, Taura T, Lee MS, Silver PA (1999) Uncoupling of the hnRNP Npl3p from mRNAs during the stress-induced block in mRNA export. Genes Dev 13: 1994–2004PubMedCrossRefGoogle Scholar
  52. Kuge S, Jones N,Nomoto A. (1997) Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J 16: 1710–1720Google Scholar
  53. Kuge S, Toda T, Iizuka N, Nomoto A (1998) Crml (XpoI) dependent nuclear export of the budding yeast transcription factor yAP-1 is sensitive to oxidative stress. Genes Cells 3: 521–532PubMedCrossRefGoogle Scholar
  54. Lakin ND, Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene 18: 7644–7655PubMedCrossRefGoogle Scholar
  55. Latres E, Chiaur DS, Pagano M (1999) The human F box protein beta-Trcp associates with the Cull/Skpl complex and regulates the stability of beta-catenin. Oncogene 18: 849–854PubMedCrossRefGoogle Scholar
  56. Lee J, Godon C, Lagniel G, Spector D, Garin J, Labarre J, Toledano MB (1999) Yapl and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem 274: 16040–16046PubMedCrossRefGoogle Scholar
  57. Lenormand P, Sardet C, Pages G, L’Allemain G, Brunet A, Pouyssegur J (1993) Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase (p45mapkk) in fibroblasts. J Cell Biol 122: 1079–1088PubMedCrossRefGoogle Scholar
  58. Lenormand P, Brondello JM, Brunet A, Pouyssegur J (1998) Growth factor-induced p42/p44 MAPK nuclear translocation and retention requires both MAPK activation and neosynthesis of nuclear anchoring proteins. J Cell Biol 142: 625–633PubMedCrossRefGoogle Scholar
  59. Madhani HD, Fink GR (1998) The riddle of MAP kinase signaling specificity. Trends Genet 14: 151–155PubMedCrossRefGoogle Scholar
  60. Martinez-Garcia JF, Huq E, Quail PH (2000) Direct targeting of light signals to a promoter element-bound transcription factor. Science 288: 859–863PubMedCrossRefGoogle Scholar
  61. Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element ( STRE ). EMBO J 15: 2227–2235Google Scholar
  62. Matsui M, Stoop CD, von Arnim AG, Wei N, Deng XW (1995) Arabidopsis COP1 protein specifically interacts in vitro with a cytoskeleton-associated protein, CIP1. Proc Natl Acad Sci USA 92: 4239–4243PubMedCrossRefGoogle Scholar
  63. Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67: 265–306PubMedCrossRefGoogle Scholar
  64. Meinkoth JL, Alberts AS, Went W, Fantozzi D, Taylor SS, Hagiwara M, Montminy M, Feramisco JR (1993) Signal transduction through the cAMP-dependent protein kinase. Mol Cell Biochem 127–128: 179–186CrossRefGoogle Scholar
  65. Moll T, Tebb G, Surana U, Robitsch H, Nasmyth K (1991) The role of phosphorylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SWI5. Cell 66: 743–758PubMedCrossRefGoogle Scholar
  66. Momand J, Wu HH, Dasgupta G (2000) MDM 2-master regulator of the p53 tumor suppressor protein. Gene 242: 15–29PubMedCrossRefGoogle Scholar
  67. Moon RT, Brown JD, Torres M (1997) WNTs modulate cell fate and behavior during vertebrate development. Trends Genet 13: 157–162PubMedCrossRefGoogle Scholar
  68. Moroianu J (1999) Nuclear import and export: transport factors, mechanisms and regulation. Crit Rev Eukaryot Gene Expr 9: 89–106PubMedCrossRefGoogle Scholar
  69. Nasmyth K, Adolf G, Lydall D, Seddon A (1990) The identification of a second cell cycle control on the HO promoter in yeast: cell cycle regulation of SWI5 nuclear entry. Cell 62: 631–647PubMedCrossRefGoogle Scholar
  70. Newton MG, Roy M, Morikis D, Hausken ZE, GoghIan V, Scott JD, Jennings PA (1999) The molecular basis for protein kinase A anchoring revealed by solution NMR. Nature Struct Biol 6: 222–227CrossRefGoogle Scholar
  71. Nigg EA, Hilz H, Eppenberger HM, Dutly F (1985) Rapid and reversible translocation of the catalytic subunit of cAMP-dependent protein kinase type II from the Golgi complex to the nucleus. EMBO J 4: 2801–2806PubMedGoogle Scholar
  72. Ohno M, Fornerod M, Mattaj IW (1998) Nucleocytoplasmic transport: the last 200 nanometers. Cell 92: 327–336PubMedCrossRefGoogle Scholar
  73. O’Neill EM, Kaffman A, Jolly ER, O’Shea EK (1996) Regulation of PHO4 nuclear localization by the PHO80–PHO85 cyclin-CDK complex. Science 271: 209–212PubMedCrossRefGoogle Scholar
  74. Pines J, Hunter T (1994) The differential localization of human cyclins A and B is due to a cytoplasmic retention signal in cyclin B. EMBO J 13: 3772–3781PubMedGoogle Scholar
  75. Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, Davis RJ (1995) Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 270: 7420–7426PubMedCrossRefGoogle Scholar
  76. Reiser V, Ammerer G, Ruis H (1999a) Nucleocytoplasmic traffic of MAP kinases. Gene Expr 7: 247–254PubMedGoogle Scholar
  77. Reiser V, Ruis H, Ammerer G (1999b) Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hogl mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 10: 1147–1161PubMedGoogle Scholar
  78. Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9: 180–186PubMedCrossRefGoogle Scholar
  79. Saavedra C, Tung KS, Amberg DC, Hopper AK, Cole CN (1996) Regulation of mRNA export in response to stress in Saccharomyces cerevisiae. Genes Dev 10: 1608–1620PubMedCrossRefGoogle Scholar
  80. Saavedra CA, Hammett CM, Heath CV, Cole CN (1997) Yeast heat shock mRNAs are exported through a distinct pathway defined by Riplp. Genes Dev 11: 2845–2856PubMedCrossRefGoogle Scholar
  81. Schroeter EH, Kisslinger JA, Kopan R (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393: 382–386PubMedCrossRefGoogle Scholar
  82. Shiozaki K, Russell P (1996) Conjugation, meiosis, and the osmotic stress response are regulated by Spcl kinase through Atfl transcription factor in fission yeast. Genes Dev 10: 2276–2288PubMedCrossRefGoogle Scholar
  83. Siebenlist U, Franzoso G, Brown K (1994) Structure, regulation and function of NF-kappaB. Annu Rev Cell Biol 10: 405–455PubMedCrossRefGoogle Scholar
  84. Smith A, Ward MP, Garrett S (1998) Yeast PKA represses Msn2p/Msn4p-dependent gene expres- sion to regulate growth, stress response and glycogen accumulation. EMBO J 17: 3556–3564PubMedCrossRefGoogle Scholar
  85. Stacey MG, Hicks SN, von Arnim AG (1999) Discrete domains mediate the light-responsive nuclear and cytoplasmic localization of Arabidopsis COP 1. Plant Cell 11: 349–364PubMedGoogle Scholar
  86. Stathopoulos-Gerontides A, Guo JJ, Cyert MS (1999) Yeast calcineurin regulates nuclear localiza- tion of the Crzlp transcription factor through dephosphorylation. Genes Dev 13: 798–803PubMedCrossRefGoogle Scholar
  87. Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM (1999) A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18: 1660–1672PubMedCrossRefGoogle Scholar
  88. Sträßer K, Hurt E (1999) Nuclear RNA export in yeast. FEBS Lett 452: 77–81PubMedCrossRefGoogle Scholar
  89. Toda T, Cameron S, Sass P, Zoller M, Scott JD, McMullen B, Hurwitz M, Krebs EG, Wigler M (1987) Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 7: 1371–1377PubMedGoogle Scholar
  90. Toone WM, Jones N (1998) Stress-activated signalling pathways in yeast. Genes Cells 3: 485–498PubMedCrossRefGoogle Scholar
  91. Treisman R (1996) Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 8: 205–215PubMedCrossRefGoogle Scholar
  92. Treitel MA, Kuchin S, Carlson M (1998) Snfl protein kinase regulates phosphorylation of the Migl repressor in Saccharomyces cerevisiae. Mol Cell Biol 18: 6273–6280PubMedGoogle Scholar
  93. Turpin P, Hay RT, Dargemont C (1999) Characterization of IkappaBalpha nuclear import pathway. J Biol Chem 274: 6804–6812PubMedCrossRefGoogle Scholar
  94. Uno I, Oshima T, Ishikawa T (1988) Localization of the regulatory subunit of cAMP-dependent protein kinase in Saccharomyces cerevisiae. Exp Cell Res 176: 360–365PubMedCrossRefGoogle Scholar
  95. von Arnim AG, Deng XW (1994) Light inactivation of Arabidopsis photomorphogenic repressor COPI involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell 79: 1035–1045PubMedCrossRefGoogle Scholar
  96. Wilkinson MG, Samuels M, Takeda T, Toone WM, Shieh JC, Toda T, Millar JB, Jones N (1996) The Atfl transcription factor is a target for the Styl stress-activated MAP kinase pathway in fission yeast. Genes Dev 10: 2289–2301PubMedCrossRefGoogle Scholar
  97. Wurgler-Murphy SM, Maeda T, Witten EA, Saito H (1997) Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol Cell Biol 17: 1289–1297PubMedGoogle Scholar
  98. Yamamoto N, Deng XW (1999) Protein nucleocytoplasmic transport and its light regulation in plants. Genes Cells 4: 489–500PubMedCrossRefGoogle Scholar
  99. Yan C, Lee LH, Davis LI (1998) Crmlp mediates regulated nuclear export of a yeast AP-1-like transcription factor. EMBO J 17: 7416–7429PubMedCrossRefGoogle Scholar
  100. Yang J, Bardes ES, Moore JD, Brennan J, Powers MA, Kornbluth S (1998a) Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev 12: 2131–2143PubMedCrossRefGoogle Scholar
  101. Yang J, Drazba JA, Ferguson DG, Bond M (1998b) A-kinase anchoring protein 100 (AKAP100) is localized in multiple subcellular compartments in the adult rat heart. J Cell Biol 142: 511–522PubMedCrossRefGoogle Scholar
  102. Yu Y, Jiang YW, Wellinger RJ, Carlson K, Roberts JM, Stillman DJ (1996) Mutations in the homologous ZDS1 and ZDS2 genes affect cell cycle progression. Mol Cell Biol 16: 5254–5263PubMedGoogle Scholar
  103. Zhu J, McKeon F (1999) NF-AT activation requires suppression of Crml-dependent export by calcineurin. Nature 398: 256–260PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Christoph Schüller
    • 1
    • 2
  • Helmut Ruis
    • 1
    • 2
  1. 1.Vienna Biocenter, Institute of Biochemistry and Molecular Cell BiologyUniversity of ViennaWienAustria
  2. 2.Ludwig Boltzmann-Forschungsstelle für BiochemieWienAustria

Personalised recommendations