Skip to main content

Using Retroviruses To Study the Nuclear Export of mRNA

  • Chapter
Nuclear Transport

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 35))

Abstract

Several non-exclusive approaches can be taken to identify and then characterize cellular proteins involved in the nucleocytoplasmic transport of protein or RNA molecules. One approach that has been extremely useful is the genetic identification of factors required for the nucleocytoplasmic transport of a particular macromolecule, e.g. nuclear export of poly(A)+ RNA, by screening yeast conditional mutants for, in this case, nuclear accumulation of poly(A)+ RNA at the restrictive temperature. While this kind of approach has led to the identification of gene products that play a direct or indirect role in several transport pathways, including mRNA export (Amberg et al. 1992; Kadowaki et al. 1994), it can be difficult to subsequently discern the biochemical role played by a particular genetically identified gene product. An alternative strategy is to use protein binding affinity, either in vitro or using the yeast two-hybrid protein:protein interaction assay, to identify factors that specifically bind to a relevant protein target. For example, the G-protein Ran, in its GTP-βound form, is a critical cofactor for nuclear transport mediated by all members of the extensive importin-β/karyopherin-β family of transport factors (Melchior et al. 1993; Moore and Blobel 1993; Izaurralde et al. 1997). The identification of human proteins that can bind to the GTP-, but not GDP-, bound form of Ran in vitro has therefore facilitated the identification of several nuclear transport factors, including CAS and exportin t (Kutay et al. 1997, 1998). Conversely, use of the two-hybrid assay allowed the initial identification of transportin/ karyopherin-β2, the import factor specific for the unusual type of nuclear localization signal (NLS) present in the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1; Pollard et al. 1996; Fridell et al. 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amberg DA, Goldstein AL, Cole CN (1992) Isolation and characterization of RATI, an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev 6: 1173–1189

    Article  PubMed  CAS  Google Scholar 

  • Bachi AI, Braun C, Rodrigues JP, Panté N, Ribbeck K, von Kobbe C, Kutay U, Wilm M, Görlich D, Carmo-Fonseca M, Izaurralde E (2000) The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-Bearing RNA substrates. RNA 6: 136–158

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP, Zapp ML, Green MR, Szostak JW (1991) HIV-1 Rev regulation involves recognition of non-Watson-crick base pairs in viral RNA. Cell 67: 529–536

    CAS  Google Scholar 

  • Berkhout B, Jebbink M, Zsíros J (1999) Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus. J Virol 73: 2365–2375

    PubMed  CAS  Google Scholar 

  • Bogerd HP, Huckaby GL, Ahmed YF, Hanly SM, Greene WC (1991) The type I human T-cell leukemia virus (HTLV-I) Rex trans-activator binds directly to the HTLV-I Rex and the type 1 human immunodeficiency virus Rev RNA response elements. Proc Natl Acad Sci USA 88: 5704–5708

    CAS  Google Scholar 

  • Bogerd HP, Echarri A, Ross TM, Cullen BR (1998) Inhibition of human immunodeficiency virus Rev and human T-cell leukemia virus Rex function, but not Mason-Pfizer monkey virus constitutive transport element activity, by a mutant human nucleoporin targeted to Crml. J Virol 72: 8627–8635

    PubMed  CAS  Google Scholar 

  • Braun IC, Rohrbach E, Schmitt C, Izaurralde E (1999) TAP binds to the constitutive transport element (CTE) through a novel RNA-(3inding motif that is sufficient to promote CTEdependent RNA export from the nucleus. EMBO J 18: 1953–1965

    Article  PubMed  CAS  Google Scholar 

  • Bray M, Prasad S, Dubay JW, Hunter E, Jeang K-T, Rekosh D, Hammarskjöld M-L (1994) A small element from the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev-independent. Proc Natl Acad Sci USA 91: 1256–1260

    Article  PubMed  CAS  Google Scholar 

  • Chang DD, Sharp PA (1989) Regulation by HIV depends upon recognition of splice sites. Cell 59: 789–795

    Article  PubMed  CAS  Google Scholar 

  • Cullen BR (1998) Retroviruses as model systems for the study of nuclear RNA export pathways. Virology 249: 203–210

    Article  PubMed  CAS  Google Scholar 

  • Ernst RK, Bray M, Rekosh D, Hammarskjöld M-L (1997) A structured retroviral RNA element that mediates nucleocytoplasmic export of intron-containing RNA. Mol Cell Biol 17: 135–144

    PubMed  CAS  Google Scholar 

  • Feinberg MB, Jarrett RF, Aldovini A, Gallo RC, Wong-Staal F (1986) HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA. Cell 46: 807–817

    Article  PubMed  CAS  Google Scholar 

  • Fischer U, Huber J, Boelens WC, Mattaj IW, Lührmann R (1995) The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82: 475–483

    CAS  Google Scholar 

  • Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997a) Crml is an export receptor for leucine rich nuclear export signals. Cell 90: 1051–1060

    Article  PubMed  CAS  Google Scholar 

  • Fornerod M, van Deursen J, van Baal S, Reynolds A, Davis D, Murti KG, Fransen J, Grosveld G (1997b) The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J 16: 807–816

    Article  PubMed  CAS  Google Scholar 

  • Fridell RA, Partin KM, Carpenter S, Cullen BR (1993) Identification of the activation domain of equine infectious anemia virus Rev. J Virol 67: 7317–7323

    CAS  Google Scholar 

  • Fridell RA, Fischer U, Lührmann R, Meyer BE, Meinkoth JL, Malim MH, Cullen BR (1996) Amphibian transcription factor IIIA proteins contain a sequence element functionally equivalent to the nuclear export signal of human immunodeficiency virus type 1 Rev. Proc Natl Acad Sci USA 93: 2936–2940

    Article  CAS  Google Scholar 

  • Fridell RA, Truant R, Thorne L, Benson RE, Cullen BR (1997) Nuclear import of hnRNP Al is mediated by a novel cellular cofactor related to karyopherin-(3. J Cell Sci 110: 1325–1331

    PubMed  CAS  Google Scholar 

  • Görlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15: 607–660

    Article  PubMed  Google Scholar 

  • Grassmann R, Berchtold S, Aepinus C, Ballaun C, Boehnlein E, Fleckenstein B (1991) In vitro binding of human T-cell leukemia virus Rex proteins to the Rex-response element of viral transcripts. J Virol 65: 3721–3727

    PubMed  CAS  Google Scholar 

  • Grüter P, Tabernero C, von Kobbe C, Schmitt C, Saavedra C, Bachi A, Wilm M, Felber BK, Izaurralde E (1998) TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol Cell 1: 649–659

    Article  PubMed  Google Scholar 

  • Hakata Y, Umemoto T, Matsushita S, Shida H (1998) Involvement of human CRM1 (Exportin 1) in the export and multimerization of the Rex protein of human T-cell leukemia virus type 1. J Virol 72: 6602–6607

    PubMed  CAS  Google Scholar 

  • Hanly SM, Rimsky LT, Malim MH, Kim JH, Hauber J, Duc Dudon M, Le S-Y, Maizel JV, Cullen BR, Greene WC (1989) Comparative analysis of the HTLV-I Rex and HIV-1 Rev trans-regulatory proteins and their RNA response elements. Genes Dev 3: 1534–1544

    CAS  Google Scholar 

  • Heaphy S, Dingwall C, Ernberg I, Gait MJ, Green SM, Karn J, Lowe AD, Singh M, Skinner MA (1990) HIV-1 regulator of virion expression ( Rev) protein binds to an RNA stem-loop structure located within the Rev response element region. Cell 60: 685–693

    Google Scholar 

  • Henderson BR, Percipalle P (1997) Interactions between HIV Rev and nuclear import and export factors: the Rev nuclear localisation signal mediates specific binding to human Importin-(3. J Mol Biol 274: 693–707

    CAS  Google Scholar 

  • Hidaka M, Inoue J, Yoshida M, Seiki M (1988) Post-transcriptional regulator (Rex) of HTLV-1 initiates expression of viral structural proteins but suppresses expression of regulatory proteins. EMBO J 7: 519–523

    PubMed  CAS  Google Scholar 

  • Hir HL, Moore MI, Maquat LE (2000) Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions. Genes Dev 14: 1098–1108

    PubMed  Google Scholar 

  • Hope TJ, Bond BL, McDonald D, Klein NP, Parslow TG (1991) Effector domains of human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex are functionally interchangeable and share an essential peptide motif. J Virol 65: 6001–6007

    CAS  Google Scholar 

  • Izaurralde E, Kutay U, von Kobbe C, Mattaj IW, Görlich D (1997) The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J 16: 6535–6547

    Article  PubMed  CAS  Google Scholar 

  • Jarmolowski A, Boelens WC, Izaurralde E, Mattaj IW (1994) Nuclear export of different classes of RNA is mediated by specific factors. J Cell Biol 124: 627–635

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki T, Chen S, Hitomi M, Jacobs E, Kumagai C, Liang S, Schneiter R, Singleton D, Wisniewska J, Tartakoff AM (1994) Isolation and characterization of Saccharomyces cerevisiae mRNA transport-defective (mtr) mutants. J Cell Biol 126: 649–659

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Cullen BR (1999) The human Tap protein is a nuclear mRNA export factor that contains novel RNA-Binding and nucleocytoplasmic transport sequences. Genes Dev 13: 11261139

    Google Scholar 

  • Kang Y, Bogerd HP, Cullen BR (2000) Analysis of cellular factors that mediate nuclear export of RNAs bearing the Mason-Pfizer monkey virus constitutive transport element. J Virol 74: 5863–5871

    Article  PubMed  CAS  Google Scholar 

  • Katahira J, Strasser K, Podtelejnikov A, Mann M, Jung JU, Hurt E (1999) The Mex67pmediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J 18: 2593–2609

    Article  PubMed  CAS  Google Scholar 

  • Kutay U, Bischoff FR, Kostka S, Kraft R, Görlich D (1997) Export of importin cc from the nucleus is mediated by a specific nuclear transport factor. Cell 90: 1061–1071

    Article  PubMed  CAS  Google Scholar 

  • Kutay U, Lipowsky G, Izaurralde E, Bischoff FR, Schwarzmaier P, Hartmann E, Görlich D (1998) Identification of a tRNA-specific nuclear export receptor. Mol Cell 1: 359–369

    Article  PubMed  CAS  Google Scholar 

  • Legrain P, Rosbash M (1989) Some cis- and trans-acting mutants for splicing target pre-mRNA to the Cytoplasm. Cell 57: 573–583

    Article  PubMed  CAS  Google Scholar 

  • Linial ML (1999) Foamy viruses are unconventional retroviruses. J Virol 73: 1747–1755

    PubMed  CAS  Google Scholar 

  • Löwer R, Tönjes RR, Korbmacher C, Kurth R, Löwer J (1995) Identification of a Rev-related protein by analysis of spliced transcripts of the human endogenous retroviruses HTDV/HERV-K. J Virol 69: 141–149

    PubMed  Google Scholar 

  • Luo M-J, Reed R (1999) Splicing is required for rapid and efficient mRNA export in metazoans. Proc Natl Acad Sci USA 96: 14937–14942

    Article  PubMed  CAS  Google Scholar 

  • Magin C, Löwer R, Löwer J (1999) cORF and RcRE, the Rev/Rex and RRE/RxRE homologues of the human endogenous retrovirus family HTDV/HERV-K. J Virol 73: 9496–9507

    Google Scholar 

  • Malim MH, Cullen BR (1991) HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: Implications for HIV-1 latency. Cell 65: 241–248

    CAS  Google Scholar 

  • Malim MH, Hauber J, Fenrick R, Cullen BR (1988) Immunodeficiency virus Rev trans-activator modulates the expression of the viral regulatory genes. Nature 335: 181–183

    CAS  Google Scholar 

  • Malim MH, Böhnlein S, Hauber J, Cullen BR (1989a) Functional dissection of the HIV-1 Rev trans-activator - derivation of a trans-dominant repressor of Rev function. Cell 58: 205214

    Google Scholar 

  • Malim MH, Hauber J, Le S-Y, Maizel JV, Cullen BR (1989b) The HIV-1 Rev transactivator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338: 254–257

    CAS  Google Scholar 

  • Malim MH, McCarn DF, Tiley LS, Cullen BR (1991) Mutational definition of the human immunodeficiency virus type 1 Rev activation domain. J Virol 65: 4248–4254

    CAS  Google Scholar 

  • Mancuso VA, Hope TJ, Zhu L, Derse D, Phillips T, Parslow TG (1994) Posttranscriptional effector domains in the Rev proteins of feline immunodeficiency virus and equine infectious anemia virus. J Virol 68: 1998–2001

    CAS  Google Scholar 

  • Medstrand P, Mager DL (1998) Human-specific integrations of the HERV-K endogenous retro-virus family. J Virol 72: 9782–9787

    PubMed  CAS  Google Scholar 

  • Melchior F, Paschal B, Evans E, Gerace L (1993) Inhibition of nuclear protein import by nonhydrolyzable analogs of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor. J Cell Biol 123: 1649–1659

    Article  PubMed  CAS  Google Scholar 

  • Meyer BE, Malim MH (1994) The HIV-1 Rev trans-activator shuttles between the nucleus and the cytoplasm. Genes Dev 8: 1538–1547

    CAS  Google Scholar 

  • Moore MS, Blobel G (1993) The GTP-Binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365: 661–663

    Article  PubMed  CAS  Google Scholar 

  • Neville M, Stutz F, Lee L, Davis LI, Rosbash M (1997) The importin-Jeta family member Crmlp bridges the interaction between Rev and the nuclear pore complex during nuclear export. Curr Biol 7: 767–775

    CAS  Google Scholar 

  • Ogert RA, Lee LH, Beemon KL (1996) Avian retroviral RNA element promotes unspliced RNA accumulation in the cytoplasm. J Viral 70: 3834–3843

    CAS  Google Scholar 

  • Ohno M, Segref A, Bachi A, Wilm M, Mattaj IW (2000) PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phosphorylation. Cell 101: 187–198

    Article  PubMed  CAS  Google Scholar 

  • Palmeri D, Malim MH (1999) Importin J can mediate the nuclear import of an arginine-rich nuclear localization signal in the absence of importin a. Mol Cell Biol 19: 1218–1225

    CAS  Google Scholar 

  • Pasquinelli AE, Ernst RK, Lund E, Grimm C, Zapp ML, Rekosh D, Hammarskjöld M-L, JE Dahlberg (1997) The constitutive transport element (CTE) of Mason-Pfizer monkey virus ( MPMV) accesses a cellular mRNA export pathway. EMBO J 16: 7500–7510

    Google Scholar 

  • Patience C, Wilkinson DA, Weiss RA (1997) Our retroviral heritage. Trends Genet 13: 116–120

    Article  PubMed  CAS  Google Scholar 

  • Pollard VW, Michael WM, Naklelny S, Siomi MC, Wang F, Dreyfuss G (1996) A novel receptor-mediated nuclear protein import pathway. Cell 86: 985–994

    Article  PubMed  CAS  Google Scholar 

  • Saavedra C, Felber B, Izaurralde E (1997) The simian retrovirus-1 constitutive transport element, unlike the HIV-1 RRE, uses factors required for cellular mRNA export. Curr Biol 7: 619–628

    Article  PubMed  CAS  Google Scholar 

  • Santos-Rosa H, Moreno H, Simos G, Segref A, Fahrenkrog B, Pante N, Hurt E (1998) Nuclear mRNA export requires complex formation between Mex67p and Mtr2p at the nuclear pores. Mol Cell Biol 18: 6826–6838

    PubMed  CAS  Google Scholar 

  • Segref A, Sharma K, Doye V, Hellwig A, Huber J, Lührmann R, Hurt E (1997) Mex67p, a novel factor for nuclear mRNA export, binds to both poly(a)+ RNA and nuclear pores. EMBO J 16: 3256–3271

    Article  PubMed  CAS  Google Scholar 

  • Stade K, Ford CS, Guthrie C, Weis K (1997) Exportin 1 ( Crmlp) is an essential nuclear export factor. Cell 90: 1041–1050

    Google Scholar 

  • Tabernero C, Zolotukhin AS, Valentin A, Pavlakis GN, Felber BK (1996) The posttranscriptional control element of the simian retrovirus type 1 forms an extensive RNA secondary structure necessary for its function. J Virol 70: 5998–6011

    PubMed  CAS  Google Scholar 

  • Tristem M (2000) Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J Virol 74: 3715–3730

    Article  PubMed  CAS  Google Scholar 

  • Truant R, Cullen BR (1999) The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals. Mol Cell Biol 19: 1210–1217

    CAS  Google Scholar 

  • Truant R, Kang Y, Cullen BR (1999) The human Tap nuclear RNA export factor contains a novel transportin-dependent nuclear localization signal that lacks nuclear export signal function. J Biol Chem 274: 32167–32171

    Article  PubMed  CAS  Google Scholar 

  • Varmus H, Brown P (1989) Retroviruses. In: Berg DE, Howe MM (eds) Mobile DNA. Am Soc Microbiol, Washington, DC, pp 53–108

    Google Scholar 

  • Weichselbraun I, Farrington GK, Rusche JR, Böhnlein E, Hauber J (1992) Definition of the human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex protein activation domain by functional exchange. J Virol 66: 2583–2587

    CAS  Google Scholar 

  • Wen W, Meinkoth JL, Tsien RY,Taylor SS (1995) Identification of a signal for rapid export of proteins from the nucleus. Cell 82: 463–473

    CAS  Google Scholar 

  • Yang J, Cullen BR (1999) Structural and functional analysis of the avian leukemia virus constitutive transport element. RNA 5: 1645–1655

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Bogerd HP, Peng S, Wiegand H, Truant R, Cullen BR (1999) An ancient family of human endogenous retroviruses encodes a functional homolog of the HIV-1 Rev protein. Proc Natl Acad Sci USA 96: 13404–13408

    Article  CAS  Google Scholar 

  • Zapp ML, Hope TJ, Parslow TG, Green MR (1991) Oligomerization and RNA binding domains of the type 1 human immunodeficiency virus Rev protein: a dual function for an arginine-rich binding motif. Proc Natl Acad Sci USA 88: 7734–7738

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cullen, B.R. (2002). Using Retroviruses To Study the Nuclear Export of mRNA. In: Weis, K. (eds) Nuclear Transport. Results and Problems in Cell Differentiation, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44603-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44603-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53608-3

  • Online ISBN: 978-3-540-44603-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics