The Vertebrate Nuclear Pore Complex: From Structure to Function

  • Birthe Fahrenkrog
  • Ueli Aebi
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 35)


In interphase eukaryotic cells, the cytoplasm is spatially separated from the cell nucleus by the double-membraned nuclear envelope (NE). Inserted into the NE are nuclear pore complexes (NPCs) which mediate bidirectional nucleocytoplasmic transport, i.e. the passive diffusion of ions and small molecules as well as the signal-mediated transport of proteins, RNAs and RNP particles in and out of the nucleus (reviewed in Izaurralde and Adam 1998; Mattaj and Englmeier 1998; Ohno et al. 1998; Görlich and Kutay 1999). Extensive electron microscopy studies, predominantly on Xenopus oocytes, have revealed the three-dimensional (3-D) architecture of the NPC (reviewed in Panté and Aebi 1996a; Stoffler et al. 1999a; Allen et al. 2000; Fahrenkrog et al. 2001). Accordingly, the vertebrate NPC reveals an eight-fold symmetric (i.e. in the plane of the NE) tripartite (i.e. perpendicular to the plane of the NE) architecture with a total mass of ~125 MDa. The ~55 MDa central framework of the NPC (also called the spoke complex) is built of eight multi-domain spokes, each consisting of two roughly identical halves (Fig. 1). The central framework is sandwiched between a ~32 MDa cytoplasmic and a ~21 MDa nuclear ring moiety. Eight short kinky fibrils emanate from the cytoplasmic ring, protruding into the cytoplasm, whereas the nuclear ring is capped by a basket-like assembly (also called the fish-trap), made of eight thin fibrils that join distally so as to form an iris-like ring.


Nuclear Pore Complex Nuclear Periphery Central Pore Nucleocytoplasmic Transport Distal Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahuja HG, Felix CA, Aplan PD (1999) The t(11;20)(p15;g11) chromosomal translocation associated with therapy-related myelodysplastic syndrome results in an NUP98-TOPI fusion. Blood 94: 3258–3261PubMedGoogle Scholar
  2. Akey CW, Radermacher M(1993) Architecture of the Xenopus nuclear pore complex revealed by 3-dimensional cryo-electron microscopy. J Cell Biol 122: 1–19Google Scholar
  3. Allen TD, Cronshaw JM, Bagley S, Kiseleva E, Goldberg MW (2000) The nuclear pore complex: mediator of translocation between nucleus and cytoplasm. J Cell Sci 113: 1651–1659PubMedGoogle Scholar
  4. Arai Y, Hosoda F, Kobayashi H, Arai K, Hayashi Y, Nanao K, Kaneko Y, Ohki M(1997) The inv(11)(p15g22) chromosome translocation of de novo and therapy-related myeloid malignancies results in fusion of the nucleoporin gene NUP98, with the putative RNA helicase gene, DDX10. Blood 89: 3936–3944Google Scholar
  5. Bangs P, Burke B, Powers C, Craig R, Purohit A, Doxsey S (1998) Functional analysis of Tpr: identification of nuclear pore complex association and nuclear localization domain and a role in mRNA export. J Cell Biol 143: 1801–1812PubMedCrossRefGoogle Scholar
  6. Bastos R, Lin A, Enarson M, Burke B (1996) Targeting and function of nuclear pore complex protein Nup153. J Cell Biol 134: 1141–1156PubMedCrossRefGoogle Scholar
  7. Bastos R, de Pouplana LR, Enarson M, Bodoor K, Burke B (1997) Nup84, a novel nucleoporin that is associated with CAN/Nup214 on the cytoplasmic face of the nuclear pore complex. J Cell Biol 137: 989–1000PubMedCrossRefGoogle Scholar
  8. Bischoff FR, Ponstingl H (199la) Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354: 80–82Google Scholar
  9. Bischoff FR, Ponstingl H (1991b) Mitotic regulator protein RCC1 is complexed with a nuclear ras-related polypeptide. Proc Natl Acad Sci USA 88: 10830–10834PubMedCrossRefGoogle Scholar
  10. Boer JM, van Deursen JMA, Huib HC, Fransen JAM, Grosveld GC (1997) The nucleoporin CAN/Nup214 binds to both the cytoplasmic and the nucleoplasmic sides of the nuclear pore complex in overexpressing cells. Exp Cell Res 232: 182–185PubMedCrossRefGoogle Scholar
  11. Bodoor K, Shaikh S, Salina D, Raharjo WH, Bastos R, Lohka M, Burke B(1999a) Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis. J Cell Sci 112: 2253 2264Google Scholar
  12. Bodoor K, Shaikh S, Enarson P, Chowdhury S, Salina D, Raharjo WH, Burke B(1999b) Function and assembly of nuclear pore complex proteins. Biochem Cell Biol 77: 321–329Google Scholar
  13. Borrow J, Shearman AM, Stanton VP Jr, Becher R, Collins T, Williams AJ, Dubé I, Katz F, Morris C, Ohyashiki K, Toyama K, Rowley J, Housman DE(1996) The t(7;11)(p15;p15) translocation in acute myeloid leukemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet 12: 159–167Google Scholar
  14. Braun IC, Rohrbach E, Schmitt C, Izaurralde E (1999) TAP binds to the constitutive transport element ( CTE) through a novel RNA-binding motif that is sufficient to promote CTEdependent RNA export from the nucleus. EMBO J 18: 1953–1965Google Scholar
  15. Carmo-Fonseca M, Kern H, Hurt EC (1991) Human nucleoporin p62 and the essential yeast nuclear pore protein NSP1 show sequence similarity and similar domain organization. Eur J Cell Biol 55: 17–30PubMedGoogle Scholar
  16. Collas P (1998) Nuclear envelope disassembly in mitotic extracts requires functional nuclear pores and a nuclear lamina. J Cell Sci 111: 1293–1303PubMedGoogle Scholar
  17. Cordes VC, Waizenegger I, Krohne G (1991) Nuclear pore complex glycoprotein p62 of Xenopus laevis and mouse: cDNA cloning identification of its glycosylation region. Eur J Cell Biol 55: 31–47PubMedGoogle Scholar
  18. Cordes VC, Reidenbach S, Rackwitz HR, Franke WW (1997) Identification of protein p270/Tpr as a constitutive component of the nuclear pore complex-attached intranuclear filaments. J Cell Biol 136: 515–529PubMedCrossRefGoogle Scholar
  19. Cordes VC, Hase ME, Müller L (1998) Molecular segments of protein Tpr that confer nucleartargeting and association with the nuclear pore complex. Exp Cell Res 245: 43–56PubMedCrossRefGoogle Scholar
  20. Courvalin JC, Worman HJ (1997) Nuclear envelope protein autoantibodies in primary biliary cirrhosis. Semin Liver Dis 17: 79–90PubMedCrossRefGoogle Scholar
  21. Danker T, Schillers H, Storck J, Shahin V, Krämer B, Wilhelmi M, Oberleithner H (1999) Nuclear hourglass technique: an approach that detects electrically open nuclear pores in Xenopus laevis oocyte. Proc Natl Acad Sci USA 96: 13530–13535PubMedCrossRefGoogle Scholar
  22. Davis LI (1995) The nuclear pore complex. Annu Rev Biochem 64: 865–896PubMedCrossRefGoogle Scholar
  23. Dockendorff TC, Heath CV, Goldstein Al, Snay CA, Cole CN (1997) C-terminal truncations of the yeast nucleoporin Nup145p produce a rapid temperature-conditional mRNA export defect and alterations to nuclear structure. Mol Cell Biol 17: 906–920PubMedGoogle Scholar
  24. Emtage JLT, Bucci M, Watkins JL, Wente SR (1997) Defining the essential functional regions of the nucleoporin Nup145p. J Cell Sci 119: 911–925Google Scholar
  25. Enarson P, Enarson M, Bastos R, Burke B (1998) Amino-terminal sequences that direct nucleo-Google Scholar
  26. porin Nup153 to the inner surface of the nuclear envelope. Chromosoma 107:228–236Google Scholar
  27. Engel A, Lyubchenko Y, Müller D (1999) Atomic force microscopy: a powerful tool to observeGoogle Scholar
  28. biomolecules at work. Trends Cell Biol 9:77–80Google Scholar
  29. Fahrenkrog B, Hurt EC, Aebi U, Panté N (1998) Molecular architecture of the yeast nuclear pore complex: localization of Nsplp subcomplexes. J Cell Biol 143: 577–588PubMedCrossRefGoogle Scholar
  30. Fahrenkrog B,Aris JP, Hurt EC, Panté N, Aebi U (2000) Comparative spatial localization of protein A tagged and endogenous yeast nuclear pore complex proteins by immunoelectron microscopy. J Struct Biol 129: 295–305Google Scholar
  31. Fahrenkrog B, Stoffler D, Aebi U (2001) Nuclear pore complex architecture and functional dynamics. Curr Top Microbiol 259: 95–117CrossRefGoogle Scholar
  32. Favreau C, Worman HJ, Wozniak RW, Frappier T, Courvalin JC (1996) Cell cycle-dependent phosphorylation of nucleoporins and nuclear pore membrane protein gp210. Biochemistry 35: 8035–8044PubMedCrossRefGoogle Scholar
  33. Feldherr C, Akin D, Moore MS (1998) The nuclear import factor p10 regulates the functional size of the nuclear pore complex during oogenesis. J Cell Sci 111: 1889–1896PubMedGoogle Scholar
  34. Feldherr CM, Akin D (1997) The location of the transport gate in the nuclear pore complex. J Cell Sci 110: 3065–3070PubMedGoogle Scholar
  35. Feldherr CM, Kallenbach E, Schultz N (1984) Movement of a karyophilic protein through the nuclear pore of oocytes. J Cell Biol 107: 1289–1297Google Scholar
  36. Filson AJ, Lewis A, Blobel G, Fisher PA (1985) Monoclonal antibodies prepared against the major Drosophila nuclear matrix-pore complex-lamina glycoprotein bind specifically to the nuclear envelope in situ. J Biol Chem 260: 3164–3172PubMedGoogle Scholar
  37. Finlay DR, Meier E, Bradley P, Horecka J, Forbes DJ (1991) A compex of nuclear pore proteins required for pore function. J Cell Biol 114: 169–183PubMedCrossRefGoogle Scholar
  38. Fischer R, Cordes VC, Franke WW (1997) Sequence analysis of the nuclear pore complex protein in a lower metazoan: nucleoporin p62 of the coelenterate Hydra vulgaris. Gene 185: 285–293CrossRefGoogle Scholar
  39. Fontoura BMA, Blobel G, Matunis MJ (1999) A conserved biogenesis pathway for nucleoporins: proteolytic processing of a 186-kilodalton precursor generates Nup98 and the novel nucleoporin, Nup96. J Cell Biol 144: 1097–1112PubMedCrossRefGoogle Scholar
  40. Fornerod M, van Deursen J, van Baal S, Reynolds A, Davis D, Murti KG, Fransen J, Grosveld G (1997) The human homologue of yeast Crml is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J 16: 807–816PubMedCrossRefGoogle Scholar
  41. Gant TM, Wilson KL (1997) Nuclear assembly. Annu Rev Cell Dev Biol 13: 669–695PubMedCrossRefGoogle Scholar
  42. Gant TM, Goldberg MW, Allen TD (1998) Nuclear envelope and nuclear pore assembly: analysis of assembly intermediates by electron microscopy. Curr Opin Cell Biol 10: 409–425PubMedCrossRefGoogle Scholar
  43. Gerace L, Ottaviano Y, Koch-Kondor C (1982) Identification of a major polypeptide of the nuclearGoogle Scholar
  44. pore complex. J Cell Biol 95:826–837Google Scholar
  45. Gerace L (1992) Molecular trafficking across the nuclear pore. Curr Opin Cell Biol 4:637–645 Gigliotti S, Callaini G, Andone S, Riparbelli MG, Pernas-Alonso R, Hoffmann G, Grazani F, MalvaGoogle Scholar
  46. C (1998) Nup154, a new Drosophila gene essential for male and female gametogenesis is related to the Nup155 vertebrate nucleoporin gene. J Cell Biol 142: 1195–1207CrossRefGoogle Scholar
  47. Görlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Ann Rev Cell Dev Biol 15: 607–660CrossRefGoogle Scholar
  48. Goldberg MW, Wiese C, Allen TD, Wilson KL (1997) Dimples, pores, star-rings, and thin-rings on growing nuclear envelopes: evidence for structural intermediates in nuclear pore assembly. J Cell Sci 110: 409–420PubMedGoogle Scholar
  49. Grandi P, Schlaich N, Takotte H, Hurt EC (1995) Functional integration of Nic96p with a core nucleoporin complex consisting of Nsplp, Nup49p and a novel protein Nup57p. EMBO J 14: 76–87PubMedGoogle Scholar
  50. Grandi P, Dang T, Panté N, Shevchenko A, Mann M, Forbes D, Hurt E (1997) Nup93, a vertebrate homologue of yeast Nic96p, forms a complex with a novel 205-kDa protein and is required for correct nuclear pore assembly. Mol Biol Cell 8: 2017–2038PubMedGoogle Scholar
  51. Greber UF, Senior A, Gerace L (1990) A major glycoprotein of the nuclear pore complex is a membrane-spanning polypeptide with a large lumenal domain and a small cytoplasmic tail. EMBO J 9: 1495–1502PubMedGoogle Scholar
  52. Grüter P, Taberno C, von Kobbe C, Schmitt C, Saavedra C, Bachi A, Wilm M, Felber BK, Izaurralde E (1998) TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol Cell 1: 649–659PubMedCrossRefGoogle Scholar
  53. Guan T, Müller S, Kleir G, Panté N, Blevitt JM, Häner M, Paschal B, Aebi U, Gerace L (1995) Structural analysis of the p62 complex, an assembly of 0-linked glycoproteins that localizes near the central gated channel of the nuclear pore complex. Mol Cell Biol 6: 1591–1603Google Scholar
  54. Hallberg E, Wozniak RW, Blobel G (1993) An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nucleoporin-like region. J Cell Biol 122: 513–521PubMedCrossRefGoogle Scholar
  55. Haraguchi T, Koujin T, Hayakawa T, Kaneda T, Tsutsumi C, Imamoto N, Akazawa C, Sukegawa J, Yoneda Y, Hiraoka Y (2000) Live fluorescence imaging reveals early recruitment of emerin, LBR, RanBP2, and Nup153 to reforming functional nuclear envelopes. J Cell Sci 113: 779794Google Scholar
  56. Hatano Y, Miura I, Kume M, Miura AB (2000) Translocation (1;11)(g23;p 15), a novel simple variant of translocation (7;11)(p15;p15), in a patient with AML ( M2) accompanied by non-Hodgkin lymphoma and gastric cancer. Cancer Genet Cytogenet 117: 19–23Google Scholar
  57. Hinshaw JE, Carragher BO, Milligan RA (1992) Architecture and design of the nuclear pore complex. Cell 69: 1133–1141PubMedCrossRefGoogle Scholar
  58. Hu T, Gerace L (1998) cDNA cloning and analysis of the expression of nucleoporin p45. Gene 221: 245–253Google Scholar
  59. Hussey DJ, Nicola M, Moore S, Peters GB, Dobrovic A (1999) The(4;11)(q21;p15) translocation fuses the NUP98 and RAPIGDSI genes and is recurrent in T-cell acute lymphocytic leukemia. Blood 94: 2072–2079PubMedGoogle Scholar
  60. Iborra FJ, Jackson DA, Cook PR (2000) The path of RNA through nuclear pores: apparent entry from the sides into specialized pores. J Cell Sci 113: 291–302PubMedGoogle Scholar
  61. Ikeda T, Ikeda K, Sasaki K, Kawakami K, Takahara J (1999) The inv(11)(p15q22) chromosome translocation of therapy-related myelodysplasia with NUP98–DDX10 and DDX10–NUP98 fusion transcripts. Int J Hematol 69: 160–164PubMedGoogle Scholar
  62. Izaurralde E, Adam SA (1998) Transport of macromolecules between the nucleus and the cytoplasm. RNA 4: 351–364PubMedGoogle Scholar
  63. Jarnik M, Aebi U (1991) Towards a 3-D model of the nuclear pore complex. J Struct Biol 107: 291–308PubMedCrossRefGoogle Scholar
  64. Kasper LH, Brindle PK, Schnabel CA, Pritchard CEJ, Cleary ML, van Deursen JMA (1999) CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98–HOAX9 oncogenicity. Mol Cell Biol 19: 764–776PubMedGoogle Scholar
  65. Katahira J, Strässer K, Podtelejnikov A, Mann M, Jung JU, Hurt E (1999) The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J 2593–2609Google Scholar
  66. Keminer O, Peters R (1999) Permeability of single nuclear pores. Biophys J 77: 217–228PubMedCrossRefGoogle Scholar
  67. Keminer O, Siebrasse JP, Zerf K, Peters R (1999) Optical recording of signal-mediated protein transport through single nuclear pore complexes. Proc Natl Acad Sci USA 96: 11842–11847PubMedCrossRefGoogle Scholar
  68. Kinoshita H, Omagari K,Whittingham S, Kato Y, Ishibashi H, Sugi K,Yano M, Kohno S, Nakanuma Y, Penner E, Wesierska-Gadek J, Reynoso-Paz S, Gershwin ME, Anderson J, Jois JA, Mackay IR (1999) Autoimmune cholangitis and primary biliary cirrhosis–an autoimmune enigma. Liver 19: 122–128Google Scholar
  69. Kiseleva E, Goldberg MW, Daneholt B, Allen TD (1996) RNP export is mediated by structural reorganization of the nuclear pore basket. J Mol Biol 260: 304–311PubMedCrossRefGoogle Scholar
  70. Kiseleva E, Goldberg MW, Allen TD, Akey CW (1998) Active nuclear pore complexes in Chironomus: visualization of transporter configurations related to mRNP export. J Cell Sci 111: 223–236PubMedGoogle Scholar
  71. Kosova B, Panté N, Rollenhagen C, Podtelejnikov A, Mann M, Aebi U, Hurt E (2000) Mlp2p, a component of nuclear pore attached intranuclear filaments, associates with Nic96p. J Biol Chem 275: 343–350PubMedCrossRefGoogle Scholar
  72. Kraemer D, Wozniak RW, Blobel G, Radu A (1994) The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm. Proc Natl Acad Sci USA 91: 1519–1523PubMedCrossRefGoogle Scholar
  73. Kwong YL, Pang A (1999) Low frequency of rearrangements of the homeobox gene HOXA9/ t(7;11) in adult acute myeloid leukemia. Genes Chrom Cancer 25: 70–74PubMedCrossRefGoogle Scholar
  74. Macaulay C, Forbes DJ (1996) Assembly of the nuclear pore: biochemically distinct steps revealed with NEM, GTP gamma S, and BAPTA. J Cell Biol 135: 5–20Google Scholar
  75. Macaulay C, Meier E, Forbes DJ (1995) Differential mitotic phosphorylation of proteins of the nuclear pore complex. J Biol Chem 270: 254–262PubMedCrossRefGoogle Scholar
  76. Matsuoka Y, Takagi M, Ban T, Miyazaki M, Yamamoto T, Kondo Y, Yoneda Y (1999) Identification and characterization of nuclear pore subcomplexes in mitotic extract of human somatic cells. Biochem Biophys Res Commun 254: 417–423PubMedCrossRefGoogle Scholar
  77. Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67: 265–306PubMedCrossRefGoogle Scholar
  78. McMorrow IM, Bastos R, Horton H, Burke B (1994) Sequence analysis of a cDNA encoding a human nuclear pore complex protein, hNup153. Biochim Biophys Acta 1217: 219–223PubMedCrossRefGoogle Scholar
  79. Mitchell PJ, Cooper CS (1992) Nucleotide sequence analysis of human tpr cDNA clones. Oncogene 7: 383–388PubMedGoogle Scholar
  80. Nakamura T, Largaespada DA, Lee MP, Johnson LA, Ohyashiki K, Toyama K, Chen SJ, Willman CL, Chen IM, Feinberg AP, Jenkins NA, Copeland NG, Shaugnessy JD Jr (1996) Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukemia. Nat Genet 12: 154–158PubMedCrossRefGoogle Scholar
  81. Nakamura T, Yamazaki Y, Hatano Y, Miura I (1999) NUP98 is fused to PMX1 homeobox gene in human acute myelogenous leukemia with chromosome translocation t(1;11)(q23;p15). Blood 94: 741–747Google Scholar
  82. Nakielny S, Shaikh S, Burke B, Dreyfuss G (1999) Nup153 is an M9-containing mobile nucleoporin with a novel Ran binding domain. EMBO J 18: 1982–1995PubMedCrossRefGoogle Scholar
  83. Nickowitz RE, Worman HJ (1993) Autoantibodies from patients with primary biliary cirrhosis recognize a restricted region within the cytoplasmic tail of nuclear pore membrane protein gp210. J Exp Med 178: 2237–2242PubMedCrossRefGoogle Scholar
  84. Nishiyama M, Arai Y, Tsunematsu Y, Kobayashi H, Asami K, Yabe M, Kato S, Oda M, Eguchi H, Ohki M, Kaneko Y (1999) 11p15 translocations involving the NUP98 gene in childhood therapy-related acute myeloid leukemia/myelodysplastic syndrome. Genes Chromosomes Cancer 26: 215–220Google Scholar
  85. Ohno M, Fornerod M, Mattaj IW (1998) Nucleocytoplasmic transport: the last 200 nanometers. Cell 92: 327–336PubMedCrossRefGoogle Scholar
  86. Panté N, Aebi U (1993) The nuclear pore complex. J Cell Biol 122: 977–984PubMedCrossRefGoogle Scholar
  87. Panté N, Aebi U (1996a) Molecular dissection of the nuclear pore complex. Crit Rev Biochem Mol Biol 31: 153–199PubMedCrossRefGoogle Scholar
  88. Panté N, Aebi U (1996b) Sequential binding of import ligands to distinct nucleopore regions during nuclear import. Science 273: 1729–1732PubMedCrossRefGoogle Scholar
  89. Panté N, Bastos R, McMorrow I, Burke B, Aebi U (1994) Interactions and 3-dimensional localization of a group of nuclear pore complex proteins. J Cell Biol 129: 925–937Google Scholar
  90. Panté N, Jarmolowski A, Izaurralde E, Sauder U, Baschong W, Mattaj IW (1997) Visualizing nuclear export of different classes of RNA by electron microscopy. RNA 3: 498–513PubMedGoogle Scholar
  91. Panté N, Thomas F, Aebi U, Burke B, Bastos R (2000) Recombinant Nup153 incorporates in vivo into Xenopus oocyte nuclear pore complexes. J Struct Biol 129: 306–312PubMedCrossRefGoogle Scholar
  92. Perez-Terzic C, Gacy AM, Bortolon R, Dzeja PP, Puceat M, Jaconi M, Prendergast FG, Terzic A (1999) Structural plasticity of the cardiac nuclear pore complex in response to regulators of nuclear import. Circ Res 84: 1292–1301PubMedCrossRefGoogle Scholar
  93. Powers M, Macaulay C, Masiarz FR, Forbes DJ (1995) Reconstituted nuclei depleted of a vertebrate GLFG nuclear pore protein, p97, import but are defective in nuclear growth and replication. J Cell Biol 128: 721–736PubMedCrossRefGoogle Scholar
  94. Powers M, Forbes DJ, Dahlberg JE, Lund E (1997) The vertebrate GLFG nucleoporin, Nup98, is an essential component of multiple RNA export pathways. J Cell Biol 136: 241–250PubMedCrossRefGoogle Scholar
  95. Radu A, Blobel G, Wozniak RW (1994) Nup107 is a novel nuclear pore complex protein that contains a leucine zipper. J Biol Chem 269: 17600–17605PubMedGoogle Scholar
  96. Radu A, Moore MS, Blobel G (1995) The peptide repeat domain of nucleoporin Nup98 functions as docking site in transport across the nuclear pore complex. Cell 81: 215–222PubMedCrossRefGoogle Scholar
  97. Rakowska A, Danker T, Schneider SW, Oberleithner H (1998) ATP-induced shape changes of nuclear pores visualized with the atomic force microscope. J Membrane Biol 163: 129–136CrossRefGoogle Scholar
  98. Raza-Egilmez SZ, Jani-Sait SN, Grossi M, Higgins MJ, Shows TB,Aplan PD (1998) NUP98-HOXD 13 gene fusion in therapy-related acute myelogenous leukemia. Cancer Res 58: 4269–4273Google Scholar
  99. Reichelt R, Holzenberg A, Buhle EL, Jarnik M, Engel A, Aebi U (1990) Correlations between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J Cell Biol 110: 883–894PubMedCrossRefGoogle Scholar
  100. Rexach M, Blobel G (1995) Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors and nucleoporins. Cell 83: 683–692PubMedCrossRefGoogle Scholar
  101. Ribbeck K, Lipowsky G, Kent HM, Stewart M, Görlich D (1998) NTF2 mediates nuclear import ofGoogle Scholar
  102. Ran. EMBO J 17:6587–6598Google Scholar
  103. Rosenblum JS, Blobel G (1999) Autoproteolysis in nucleoporin biogenesis. Proc Natl Acad Sci USA 96: 11370–11375PubMedCrossRefGoogle Scholar
  104. Rout MP, Blobel G (1993) Isolation of the yeast nuclear pore complex. J Cell Biol 109: 26412652Google Scholar
  105. Rout MP, Aitchinson JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex: composition, architecture and transport mechanism. J Cell Biol 148: 635–651PubMedCrossRefGoogle Scholar
  106. Schlaich NL, Häner M, Lustig A, Aebi U, Hurt E (1997) In vitro reconstitution of a heterotrimeric nucleoporin complex consisting of recombinant Nsplp, Nup49p and Nup57p. Mol Biol Cell 8: 33–46PubMedGoogle Scholar
  107. Shah S, Forbes DJ (1998) Separate nuclear import pathways converges on the nucleoporin Nup 153 and can be dissected with dominant-negative inhibitors. Curr Biol 8: 1376–1386PubMedCrossRefGoogle Scholar
  108. Shah S, Tugendreich S, Forbes D (1998) Major binding sites for the nuclear import receptor are the integral nucleoporin Nup153 and the adjacent nuclear filament protein Tpr. J Cell Biol 141: 31–49PubMedCrossRefGoogle Scholar
  109. Smith A, Brownawell A, Macara IG (1998) Nuclear import of Ran is mediated by the transport factor NTF2. Curr Biol 18: 6805–6815Google Scholar
  110. Snow CM, Senior A, Gerace L (1987) Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J Cell Biol 104: 1143–1156PubMedCrossRefGoogle Scholar
  111. Söderqvist H, Hallberg E (1994) The large C-terminal domain of the integral pore membrane protein, POM121, is facing the nuclear pore complex. Eur J Cell Biol 64: 186–191PubMedGoogle Scholar
  112. Söderqvist H, Imreh G, Kihlmark M, Linnmann C, Ringertz N, Hallberg E(1997) Intracellular distribution of an integral nuclear pore membrane protein fused to green fluorescent protein. Eur J Biochem 250: 808–813Google Scholar
  113. Starr CM, D’Onofrio M, Park MK, Hanover JA (1990) Primary sequence and heterologous expression of nuclear pore glycoprotein p62. J Cell Biol 110: 1861–1871PubMedCrossRefGoogle Scholar
  114. Stoffler D, Fahrenkrog B, Aebi U (1999a) The nuclear pore complex: from molecular architecture to functional dynamics. Curr Opin Cell Biol 11: 391–401PubMedCrossRefGoogle Scholar
  115. Stoffler D, Goldie KN, Aebi U (1999b) Calcium-mediated structural changes of native nuclear pore complexes monitored by time-lapse atomic force microscopy. J Mol Biol 287: 741–752PubMedCrossRefGoogle Scholar
  116. Stoffler D, Feja B, Walz J, Typke D, Baumeister W, Aebi U (2001) Novel structural features of native nuclear pore complexes revealed by cryo-electron tomography. (in preparation) Strambio-de-Castillia C, Blobel G, Rout MP (1999) Proteins connecting the nuclear pore complex with the nuclear interior. J Cell Biol 144: 839–855Google Scholar
  117. Sukegawa J, Blobel G (1993) A nuclear pore complex protein that contains zinc finger motifs, binds DNA, and faces the nucleoplasm. Cell 72: 29–38PubMedCrossRefGoogle Scholar
  118. Teixeira MT, Siniossoglou S, Podtelejnikov S, Bénichou JC, Mann M, Dujon B, Hurt E, Fabre E (1997) Two functionally distinct domains generated by in vivo cleavage of nucleoporin Nup145p: a novel biogenesis pathway for nucleoporins. EMBO J 16: 5086–5097PubMedCrossRefGoogle Scholar
  119. Theodoropoulos PA, Polioudaki H, Koulentaki M, Kouroumalis E, Georgatos SD (1999) PBC68: a nuclear pore complex protein that associates reversibly with the mitotic spindle. J Cell Sci 112: 3049–3059PubMedGoogle Scholar
  120. Van Deursen J, Boer J, Kasper L, Grosveld G (1996) G2 arrest and impaired nucleocytoplasmic transport in mouse embryos lacking the proto-oncogene CAN/Nup214. EMBO J 15: 5574–5583PubMedGoogle Scholar
  121. Von Lindern M, Fornerod M, van Baal S, Jaegle M, de Wit T, Bujis A, Grosveld G (1992) The translocation (6;9) associated with a specific type of acute myeloid leukemia, results in fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol Cell Biol 12: 1687–1697Google Scholar
  122. Wang H, Clapham DE (1999) Conformational changes of the in situ nuclear pore complex. Biophys J 77: 241–247PubMedCrossRefGoogle Scholar
  123. Wong KF, So CC, Kwong YL (1999) Chronic myelomonocytic leukemia with t(7;11)(p15;p15) and NUP98/HOXA9 fusion. Cancer Genet Cytogenet 155: 70–72CrossRefGoogle Scholar
  124. Wozniak RW, Blobel G (1992) The single transmembrane segment of gp210 is sufficient for sorting to the pore membrane domain of the nuclear envelope. J Cell Biol 119: 2083–2092CrossRefGoogle Scholar
  125. Yang Q, Rout MP, Akey CW (1998) 3-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Mol Cell 1: 223–234Google Scholar
  126. Zhang X, Huanming Y, Corydon MJ, Zhang X, Pedersen S, Korenberg JR, Chen XN, Laporte J, Gregersen N, Niebuhr E, Liu G, Bolund L (1999) Localization of a human nucleoporin 155 gene (NUP155) to the 5p13 region and cloning of its cDNA. Genomics 57: 144–151PubMedCrossRefGoogle Scholar
  127. Zimowska G, Aris JP, Paddy MR (1997) A Drosophila Tpr protein homologue is localized both in the extrachromosomal channel network and to nuclear pore complexes. J Cell Sci 110:927–944Google Scholar
  128. Zolotukhin A, Felber BK (1999) Nucleoporins Nup98 and Nup214 participate in nuclear export of human immunodeficiency virus type 1 rev. J Virol 73: 120–127Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Birthe Fahrenkrog
    • 1
  • Ueli Aebi
    • 1
  1. 1.EMBLHeidelbergGermany

Personalised recommendations