Skip to main content

The Structure and Composition of the Yeast NPC

  • Chapter
Nuclear Transport

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 35))

Abstract

The double-membraned nuclear envelope (NE) behaves as a selective barrier that segregates the genome from all cytosolic processes. A highly regulated exchange system between these two compartments is essential for proper cell growth, progression through the cell cycle, accurate responses to developmental and extracellular signals and to maintain the functional integrity of the nucleus. The sole mediators of controlled nucleocytoplasmic transport are the nuclear pore complexes (NPCs), large proteinaceous machineries embedded within specialized circular pores that traverse the NE. In actively growing cells it is estimated that every minute hundreds of proteins and ribonucleoprotein particles (RNPs) traverse each NPC in both directions. The basic mechanisms of nuclear transport appear to be highly conserved across distantly related species (reviewed in Nigg 1997; Mattaj and Englmeier 1998; Gorlich and Kutay 1999; Wente 2000). Although metabolites, water, ions and small macromolecules can freely diffuse through aqueous channels of 10 nm in the NPC, large macromolecular particles with a diameter of up to 30 nm are selectively transported across the NPC via a highly regulated energy-dependent process. Active transport requires specific soluble transport factors that recognize individual substrates both inside and outside the nucleus and mediate their interaction with the stationary phase of the NPC translocation machinery. Specifically, the translocation of transport substrates is known to require the docking of the transport complex to the NPC, the active translocation of the docked complexes across the NPC and the release of the substrate into the target compartment. Various models have been proposed to explain how this docked complex is actively translocated across the 50–60 nm long NPC transporter and then subsequently released into the nucleoplasm, and the matter is still highly controversial (see below). All models agree in attributing a crucial importance to the protein Ran in maintaining vectorial cargo transport and regulating the binding and release steps that take place during translocation. As a member of the Ras superfamily of small GTPases, Ran exists within the cell in a GDP-bound and in a GTP-bound form. The balance between these two forms is regulated by a variety of Ran cofactors that are asymmetrically distributed within the cell. As a consequence cytoplasmic Ran is thought to exist prevalently in the GDP-bound form, while Ran-GTP is thought to predominate in the nucleus. This differential distribution of Ran-GTP versus Ran-GDP would establish directional transport by ensuring that transport complexes are formed in one compartment and disassembled in the other (reviewed in Cole and Hammell 1998; Mattaj and Englmeier 1998; Pemberton et al. 1998; Wozniak et al. 1998; Gorlich and Kutay 1999). Understanding this regulated transport demands an understanding of the detailed three-dimensional map of the NPC and of the interactions and relationships between the soluble and stationary phases of nuclear transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams IR, Kilmartin JV (1999) Localization of core spindle pole body (SPB) components during SPB duplication in Saccharomyces cerevisiae. J Cell Biol 145: 809–823

    Article  PubMed  CAS  Google Scholar 

  • Aitchison JD, Blobel G, Rout MP (1995a) Nup120p: a yeast nucleoporin required for NPC distribution and mRNA transport. J Cell Biol 131: 1659–1675

    Article  PubMed  CAS  Google Scholar 

  • Aitchison JD, Rout MP, Marelli M, Blobel G, Wozniak RW (1995b) Two novel related yeast nucleoporins Nup170p and Nup157p: complementation with the vertebrate homologue Nup155p and functional interactions with the yeast nuclear pore-membrane protein Pom152p. J Cell Biol 131: 1133–1148

    Article  PubMed  CAS  Google Scholar 

  • Aitchison JD, Blobel G, Rout MP (1996) Kap104p: a karyopherin involved in the nuclear transport of messenger RNA binding proteins. Science 274: 624–627

    Article  PubMed  CAS  Google Scholar 

  • Akey CW (1990) Visualization of transport-related configurations of the nuclear pore transporter. Biophys J 58: 341–355

    Article  PubMed  CAS  Google Scholar 

  • Akey CW, Goldfarb DS (1989) Protein import through the nuclear pore complex is a multistep process. J Cell Biol 109: 971–982

    Article  PubMed  CAS  Google Scholar 

  • Akey CW, Radermacher M (1993) Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. J Cell Biol 122: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Andrulis ED, Neiman AM, Zappulla DC, Sternglanz R (1998) Perinuclear localization of chromatin facilitates transcriptional silencing [published erratum appears in Nature, 1 October 1998, 395(6701):5251. Nature 394: 592–595

    CAS  Google Scholar 

  • Bailer SM, Siniossoglou S, Podtelejnikov A, Hellwig A, Mann M, Hurt E (1998) Nup116p and nup100p are interchangeable through a conserved motif which constitutes a docking site for the mRNA transport factor gle2p. EMBO J 17: 1107–1119

    Article  PubMed  CAS  Google Scholar 

  • Bailer SM, Balduf C, Katahira J, Podtelejnikov A, Rollenhagen C, Mann M, Pante N, Hurt E (2000) Nup116p associates with the Nup82p-Nsplp-Nup159p Nucleoporin Complex. J Biol Chem: 23540–23548

    Google Scholar 

  • Bangs PL, Sparks CA, Odgren PR, Fey EG (1996) Product of the oncogene-activating gene Tpr is a phosphorylated protein of the nuclear pore complex. J Cell Biochem 61: 48–60

    Article  PubMed  CAS  Google Scholar 

  • Bangs P, Burke B, Powers C, Craig R, Purohit A, Doxsey S (1998) Functional analysis of Tpr: identification of nuclear pore complex association and nuclear localization domains and a role in mRNA export. J Cell Biol 143: 1801–1812

    Article  PubMed  CAS  Google Scholar 

  • Bayliss R, Ribbeck K, Akin D, Kent HM, Feldherr CM, Gorlich D, Stewart M (1999) Interaction between NTF2 and xFxFG-containing nucleoporins is required to mediate nuclear import of RanGDP. J Mol Biol 293: 579–593

    Article  PubMed  CAS  Google Scholar 

  • Belanger KD, Kenna MA, Wei S, Davis LI (1994) Genetic and physical interactions between Srplp and nuclear pore complex proteins Nuplp and Nup2p. J Cell Biol 126: 619–630

    Article  PubMed  CAS  Google Scholar 

  • Belgareh N, Doye V (1997) Dynamics of nuclear pore distribution in nucleoporin mutant yeast cells. J Cell Biol 136: 747–749

    Article  PubMed  CAS  Google Scholar 

  • Belgareh N, Snay-Hodge C, Pasteau F, Dagher S, Cole CN, Doye V (1998) Functional characterization of a Nup159p-containing nuclear pore subcomplex. Mol Biol Cell 9: 34753492

    Google Scholar 

  • Berezney R, Mortillaro MJ, Ma H, Wei X, Samarabandu J (1995) The nuclear matrix: a structural milieu for genomic function. Int Rev Cytol 162 A: 1–65

    Google Scholar 

  • Blobel G (1995) Unidirectional and bidirectional protein traffic across membranes. Cold Spring Harbor Symp Quant Biol 60: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Boulton SJ, Jackson SP (1996) Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res 24: 4639–4648

    Article  PubMed  CAS  Google Scholar 

  • Bucci M, Wente SR (1997) In vivo dynamics of nuclear pore complexes in yeast. J Cell Biol 136: 1185–1199

    Article  PubMed  CAS  Google Scholar 

  • Bucci M, Wente SR (1998) A novel fluorescence-based genetic strategy identifies mutants of Sac- charomyces cerevisiae defective for nuclear pore complex assembly. Mol Biol Cell 9: 2439–2461

    PubMed  CAS  Google Scholar 

  • Buss F, Kent H, Stewart M, Bailer SM, Hanover JA (1994) Role of different domains in the self-association of rat nucleoporin p62. J Cell Sci 107: 631–638

    PubMed  CAS  Google Scholar 

  • Byrd DA, Sweet DJ, Pante N, Konstantinov KN, Guan T, Saphire AC, Mitchell PJ, Cooper CS, Aebi U, Gerace L (1994) Tpr, a large coiled coil protein whose amino terminus is involved in activation of oncogenic kinases, is localized to the cytoplasmic surface of the nuclear pore complex. J Cell Biol 127: 1515–1526

    Article  PubMed  CAS  Google Scholar 

  • Chiai HJ, Rout MP, Giddings TH, Winey M (1998) Saccharomyces cerevisiae Ndclp is a shared component of nuclear pore complexes and spindle pole bodies. J Cell Biol 143: 1789–1800

    Google Scholar 

  • Cole CN, Hammell CM (1998) Nucleocytoplasmic transport: driving and directing transport. Curr Biol 8: R368–372

    Article  PubMed  CAS  Google Scholar 

  • Cordes VC, Reidenbach S, Rackwitz HR, Franke WW (1997) Identification of protein p270/Tpr as a constitutive component of the nuclear pore complex-attached intranuclear filaments. J Cell Biol 136: 515–529

    Article  PubMed  CAS  Google Scholar 

  • Del Priore V, Snay CA, Bahr A, Cole CN (1996) The product of the Saccharomyces cerevisiae RSS1 gene, identified as a high-copy suppressor of the rat7–1 temperature-sensitive allele of the RAT7/NUP159 nucleoporin, is required for efficient mRNA export. Mol Biol Cell 7: 1601–1621

    PubMed  Google Scholar 

  • Delphin C, Guan T, Melchior F, Gerace L (1997) RanGTP targets p97 to RanBP2, a filamentous protein localized at the cytoplasmic periphery of the nuclear pore complex. Mol Biol Cell 8: 2379–2390

    PubMed  CAS  Google Scholar 

  • Doye V, Hurt EC (1995) Genetic approaches to nuclear pore structure and function. Trends Genet 11: 235–241

    Article  PubMed  CAS  Google Scholar 

  • Doye V, Hurt E (1997) From nucleoporins to nuclear pore complexes. Curr Opin Cell Biol 9: 401–411

    Article  PubMed  CAS  Google Scholar 

  • Doye V, Wepf R, Hurt EC (1994) A novel nuclear pore protein Nup133p with distinct roles in poly(A)+ RNA transport and nuclear pore distribution. EMBO J 13: 6062–6075

    PubMed  CAS  Google Scholar 

  • Dworetzky SI, Feldherr CM (1988) Translocation of RNA-coated gold particles through the nuclear pores of oocytes. J Cell Biol 106: 575–584

    Article  PubMed  CAS  Google Scholar 

  • Englmeier L, Olivo JC, Mattaj IW (1999) Receptor-mediated substrate translocation through the nuclear pore complex without nucleotide triphosphate hydrolysis. Curr Biol 9: 30–41

    Article  PubMed  CAS  Google Scholar 

  • Fabre E, Hurt E (1997) Yeast genetics to dissect the nuclear pore complex and nucleocytoplasmic trafficking. Annu Rev Genet 31: 277–313

    Article  PubMed  CAS  Google Scholar 

  • Fabre E, Boelens WC, Wimmer C, Mattaj IW, Hurt EC (1994) Nup145p is required for nuclear export of mRNA and binds homopolymeric RNA in vitro via a novel conserved motif. Cell 78: 275–289

    Article  PubMed  CAS  Google Scholar 

  • Fabre E, Schlaich NL, Hurt EC (1995) Nucleocytoplasmic trafficking: what role for repeated motifs in nucleoporins? Cold Spring Harbor Symp Quant Biol 60: 677–685

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrog B, Hurt EC, Aebi U, Pante N (1998) Molecular architecture of the yeast nuclear pore complex: localization of Nsplp subcomplexes. J Cell Biol 143: 577–588

    Article  PubMed  CAS  Google Scholar 

  • Feldherr CM, Akin D (1991) Signal-mediated nuclear transport in proliferating and growth-arrested BALB/c 3T3 cells. J Cell Biol 115: 933–939

    Article  PubMed  CAS  Google Scholar 

  • Feldherr CM, Akin D (1993) Regulation of nuclear transport in proliferating and quiescent cells. Exp Cell Res 205: 179–186

    Article  PubMed  CAS  Google Scholar 

  • Feldherr CM, Akin D (1994a) Role of nuclear trafficking in regulating cellular activity. Int Rev Cytol 151: 183–228

    Article  PubMed  CAS  Google Scholar 

  • Feldherr CM, Akin D (1994b) Variations in signal-mediated nuclear transport during the cell cycle in BALB/c 3T3 cells. Exp Cell Res 215: 206–210

    Article  PubMed  CAS  Google Scholar 

  • Feldherr CM, Akin D (1997) The location of the transport gate in the nuclear pore complex. J Cell Sci 110: 3065–3070

    PubMed  CAS  Google Scholar 

  • Feldherr CM, Kallenbach E, Schultz N (1984) Movement of a karyophilic protein through the nuclear pores of oocytes. J Cell Biol 99: 2216–2222

    Article  PubMed  CAS  Google Scholar 

  • Feldherr C, Akin D, Moore MS (1998) The nuclear import factor p10 regulates the functional size of the nuclear pore complex during oogenesis. J Cell Sci 111: 1889–1896

    PubMed  CAS  Google Scholar 

  • Floer M, Blobel G (1996) The nuclear transport factor karyopherin beta binds stoichiometrically to Ran-GTP and inhibits the Ran GTPase activating protein. J Biol Chem 271: 5313–5316

    Article  PubMed  CAS  Google Scholar 

  • Floer M, Blobel G (1999) Putative reaction intermediates in Crml-mediated nuclear protein export. J Biol Chem 274: 16279–16286

    Article  PubMed  CAS  Google Scholar 

  • Floer M, Blobel G, Rexach M (1997) Disassembly of RanGTP-karyopherin beta complex, an intermediate in nuclear protein import. J Biol Chem 272: 19538–19546

    Article  PubMed  CAS  Google Scholar 

  • Franke WW, Scheer U (1974) Structures and functions of the nuclear envelope. In: Busch H (ed) The cell nucleus. Academic Press, New York, pp 219–347

    Google Scholar 

  • Galy V, Olivo-Marin JC, Scherthan H, Doye V, Rascalou N, Nehrbass U (2000) Nuclear pore complexes in the organization of silent telomeric chromatin (see comments). Nature 403: 108–112

    Article  PubMed  CAS  Google Scholar 

  • Goldberg MW, Allen TD (1992) High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nudeoplasmic face of the nuclear pores. J Cell Biol 119: 1429–1440

    Article  PubMed  CAS  Google Scholar 

  • Goldberg MW, Allen TD (1996) The nuclear pore complex and lamina: three-dimensional structures and interactions determined by field emission in-lens scanning electron microscopy. J Mol Biol 257: 848–865

    Article  PubMed  CAS  Google Scholar 

  • Goldberg MW, Wiese C, Allen TD, Wilson KL (1997) Dimples, pores, star-rings, and thin rings on growing nuclear envelopes: evidence for structural intermediates in nuclear pore complex assembly. J Cell Sci 110: 409–420

    PubMed  CAS  Google Scholar 

  • Goldstein AL, Snay CA, Heath CV, Cole CN (1996) Pleiotropic nuclear defects associated with a conditional allele of the novel nucleoporin Rat9p/Nup85p. Mol Biol Cell 7: 917–934

    PubMed  CAS  Google Scholar 

  • Gorlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15: 607–660

    Article  PubMed  CAS  Google Scholar 

  • Gorlich D, Pante N, Kutay U, Aebi U, Bischoff FR (1996) Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J 15: 5584–5594

    PubMed  CAS  Google Scholar 

  • Gorsch LC, Dockendorff TC, Cole CN (1995) A conditional allele of the novel repeat-containing yeast nucleoporin RAT7/NUP159 causes both rapid cessation of mRNA export and reversible clustering of nuclear pore complexes. J Cell Biol 129: 939–955

    Article  PubMed  CAS  Google Scholar 

  • Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63: 751–762

    Article  PubMed  CAS  Google Scholar 

  • Grandi P, Doye V, Hurt EC (1993) Purification of NSP1 reveals complex formation with “GLFG” nucleoporins and a novel nuclear pore protein NIC96. EMBO J 12: 3061–3071

    PubMed  CAS  Google Scholar 

  • Grandi P, Emig S, Weise C, Hucho F, Pohl T, Hurt EC (1995a) A novel nuclear pore protein Nup82p which specifically binds to a fraction of Nsplp. J Cell Biol 130: 1263–1273

    Article  PubMed  CAS  Google Scholar 

  • Grandi P, Schlaich N, Tekotte H, Hurt EC (1995b) Functional interaction of Nic96p with a core nucleoporin complex consisting of Nsplp, Nup49p and a novel protein Nup57p. EMBO J 14: 76–87

    PubMed  CAS  Google Scholar 

  • Grandi P, Dang T, Pane N, Shevchenko A, Mann M, Forbes D, Hurt E (1997) Nup93, a vertebrate homologue of yeast Nic96p, forms a complex with a novel 205-kDa protein and is required for correct nuclear pore assembly. Mol Biol Cell 8: 2017–2038

    PubMed  CAS  Google Scholar 

  • Guan T, Muller S, Klier G, Pante N, Blevitt JM, Haner M, Paschal B, Aebi U, Gerace L (1995) Structural analysis of the p62 complex, an assembly of 0-linked glycoproteins that localizes near the central gated channel of the nuclear pore complex. Mol Biol Cell 6: 1591–1603

    PubMed  CAS  Google Scholar 

  • Heath CV, Copeland CS, Amberg DC, Del Priore V, Snyder M, Cole CN (1995) Nuclear pore complex clustering and nuclear accumulation of poly(A)+ RNA associated with mutation of the Saccharomyces cerevisiae RAT2/NUP120 gene. J Cell Biol 131: 1677–1697

    Article  PubMed  CAS  Google Scholar 

  • Hinshaw JE, Carragher BO, Milligan RA (1992) Architecture and design of the nuclear pore complex. Cell 69: 1133–1141

    Article  PubMed  CAS  Google Scholar 

  • Ho AK, Raczniak GA, Ives EB, Wente SR (1998) The integral membrane protein snllp is genetically linked to yeast nuclear pore complex function. Mol Biol Cell 9: 355–373

    PubMed  CAS  Google Scholar 

  • Hood JK, Silver PA (1998) Cselp is required for export of Srplp/Importin-alpha from the nucleus in Saccharomyces cerevisiae (in process citation). J Biol Chem 273: 35142–35146

    Article  PubMed  CAS  Google Scholar 

  • Hu T, Guan T, Gerace L (1996) Molecular and functional characterization of the p62 complex, an assembly of nuclear pore complex glycoproteins. J Cell Biol 134: 589–601

    Article  PubMed  CAS  Google Scholar 

  • Hurt E, Strasser K, Segref A, Bailer S, Schlaich N, Presutti C, Tollervey D, Jansen R (2000) Mex67p mediates nuclear export of a variety of RNA polymerase II transcripts. J Biol Chem 275: 8361–8368

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz ME, Blobel G (1995) NUP82 is an essential yeast nucleoporin required for poly(A)+ RNA export. J Cell Biol 130: 1275–1281

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz ME, Strambio-de-Castillia C, Blobel G (1998) Two yeast nuclear pore complex proteins involved in mRNA export form a cytoplasmically oriented subcomplex. Proc Natl Acad Sci USA 95: 11241–11245

    Article  PubMed  CAS  Google Scholar 

  • Iovine MK, Wente SR (1997) A nuclear export signal in Kap95p is required for both recycling the import factor and interaction with the nucleoporin GLFG repeat regions of Nup116p and Nup100p. J Cell Biol 137: 797–811

    Article  PubMed  CAS  Google Scholar 

  • Kaffman A, Rank NM, O’Shea EK (1998) Phosphorylation regulates association of the transcription factor Pho4 with its import receptor Psel/Kap121. Genes Dev 12: 2673–2683

    Article  PubMed  CAS  Google Scholar 

  • Katahira J, Strasser K, Podtelejnikov A, Mann M, Jung JU, Hurt E (1999) The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J 18: 2593–2609

    Article  PubMed  CAS  Google Scholar 

  • Kehlenbach RH, Dickmanns A, Kehlenbach A, Guan T, Gerace L (1999) A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export (in process citation). J Cell Biol 145: 645–657

    Article  PubMed  CAS  Google Scholar 

  • Keminer O, Siebrasse JP, Zerf K, Peters R (1999) Optical recording of signal-mediated protein transport through single nuclear pore complexes. Proc Natl Acad Sci USA 96: 1184211847

    Google Scholar 

  • Kenna MA, Petranka JG, Reilly JL, Davis LI (1996) Yeast Nle3p/Nup170p is required for normal stoichiometry of FG nucleoporins within the nuclear pore complex. Mol Cell Biol 16: 2025–2036

    PubMed  CAS  Google Scholar 

  • Kiseleva E, Goldberg MW, Daneholt B, Allen TD (1996) RNP export is mediated by structural reorganization of the nuclear pore basket. J Mol Biol 260: 304–311

    Article  PubMed  CAS  Google Scholar 

  • Kiseleva E, Goldberg M, Allen T, Akey C (1998) Active nuclear pore complexes in chironomous: mvisualization of transporter configurations related to mRNP export. J Cell Sci 111: 223–236

    PubMed  CAS  Google Scholar 

  • Koepp DM, Silver PA (1996) A GTPase controlling nuclear trafficking: running the right way or walking randomly? Cell 87: 1–4

    Article  Google Scholar 

  • Kolling R, Nguyen T, Chen EY, Botstein D (1993) A new yeast gene with a myosin-like heptad repeat structure. Mol Gen Genet 237: 359–369

    PubMed  CAS  Google Scholar 

  • Kosova B, Pante N, Rollenhagen C, Hurt E (1999) Nup192p is a conserved nucleoporin with a pref- erential location at the inner site of the nuclear membrane. J Biol Chem 274: 22646–22651

    Article  PubMed  CAS  Google Scholar 

  • Kosova B, Pante N, Rollenhagen C, Podtelejnikov A, Mann M, Aebi U, Hurt E (2000) Mlp2p, a component of nuclear pore attached intranuclear filaments, associates with nic96p. J Biol Chem 275: 343–350

    Article  PubMed  CAS  Google Scholar 

  • Kraemer DM, Strambio-de-Castillia C, Blobel G, Rout MP (1995) The essential yeast nucleoporin NUP159 is located on the cytoplasmic side of the nuclear pore complex and serves in karyopherin-mediated binding of transport substrate. J Biol Chem 270: 19017–19021

    Article  PubMed  CAS  Google Scholar 

  • Laroche T, Martin SG, Gotta M, Gorham HC, Pryde FE, Louis EJ, Gasser SM (1998) Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr Biol 8: 653–656

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JB, Singer RH, Marselle LM (1989) Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57: 493–502

    Article  PubMed  CAS  Google Scholar 

  • Li O, Heath CV, Amberg DC, Dockendorff TC, Copeland CS, Snyder M, Cole CN (1995) Mutation or deletion of the Saccharomyces cerevisiae RAT3/NUP133 gene causes temperature-dependent nuclear accumulation of poly(A)+ RNA and constitutive clustering of nuclear pore complexes. Mol Biol Cell 6: 401–417

    PubMed  Google Scholar 

  • Macaulay C, Forbes DJ (1996) Assembly of the nuclear pore: biochemically distinct steps revealed with NEM, GTP gamma S, and BAPTA. J Cell Biol 132: 5–20

    Google Scholar 

  • Maillet L, Boscheron C, Gotta M, Marcand S, Gilson E, Gasser SM (1996) Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev 10: 1796–1811

    Article  PubMed  CAS  Google Scholar 

  • Marelli M, Aitchison JD, Wozniak RW (1998) Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p. J Cell Biol 143: 1813–1830

    Article  PubMed  CAS  Google Scholar 

  • Martin SG, Laroche T, Suka N, Grunstein M, Gasser SM (1999) Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97: 621–633

    Article  PubMed  CAS  Google Scholar 

  • Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67: 265–306

    Article  PubMed  CAS  Google Scholar 

  • Maul GG (1977) The nuclear and cytoplasmic pore complex: structure, dynamics, distribution and evolution. Int Rev Cytol Suppl 5: 75–186

    Google Scholar 

  • Milne GT, Jin S, Shannon KB, Weaver DT (1996) Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol Cell Biol 16: 4189–4198

    PubMed  CAS  Google Scholar 

  • Mishra K, Shore D (1999) Yeast Ku protein plays a direct role in telomeric silencing and coun- teracts inhibition by rif proteins. Curr Biol 9: 1123–1126

    Article  PubMed  CAS  Google Scholar 

  • Murphy R, Watkins JL, Wente SR (1996) GLE2, a Saccharomyces cerevisiae homologue of the Schizosaccharomyces pombe export factor RAE1, is required for nuclear pore complex structure and function. Mol Biol Cell 7: 1921–1937

    PubMed  CAS  Google Scholar 

  • Mutvei A, Dihlmann S, Herth W, Hurt EC (1992) NSP1 depletion in yeast affects nuclear pore formation and nuclear accumulation. Eur J Cell Biol 59: 280–295

    PubMed  CAS  Google Scholar 

  • Nachury MV, Weis K (1999) The direction of transport through the nuclear pore can be inverted. Proc Natl Acad Sci USA 96: 9622–9627

    Article  PubMed  CAS  Google Scholar 

  • Nehrbass U, Blobel G (1996) Role of the nuclear transport factor p10 in nuclear import. Science 272: 120–122

    Article  PubMed  CAS  Google Scholar 

  • Nehrbass U, Kern H, Mutvei A, Horstmann H, Marshallsay B, Hurt EC (1990) NSP1: a yeast nuclear envelope protein localized at the nuclear pores exerts its essential function by its carboxyterminal domain. Cell 61: 979–989

    Article  PubMed  CAS  Google Scholar 

  • Nehrbass U, Fabre E, Dihlmann S, Herth W, Hurt EC (1993) Analysis of nucleo-cytoplasmic trans- port in a thermosensitive mutant of nuclear pore protein NSP1. Eur J Cell Biol 62: 1–12

    PubMed  CAS  Google Scholar 

  • Nehrbass U, Rout MP, Maguire S, Blobel G, Wozniak RW (1996) The yeast nucleoporin Nup 188p interacts genetically and physically with the core structures of the nuclear pore complex. J Cell Biol 133: 1153–1162

    Article  PubMed  CAS  Google Scholar 

  • Neville M, Stutz F, Lee L, Davis LI, Rosbash M (1997) The importin b family member Crmlp bridges the interaction between Rev and the nuclear pore complex during nuclear export. Curr Biol 7: 767–775

    CAS  Google Scholar 

  • Nigg EA (1997) Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386: 779–787

    Article  PubMed  CAS  Google Scholar 

  • Ohno M, Fornerod M, Mattaj IW (1998) Nucleocytoplasmic transport: the last 200 nanometers. Cell 92: 327–336

    Article  PubMed  CAS  Google Scholar 

  • Paddy MR (1998) The Tpr protein: linking structure and function in the nuclear interior? Am J Hum Genet 63: 305–310

    Article  PubMed  CAS  Google Scholar 

  • Paine PL, Moore LC, Horowitz SB (1975) Nuclear envelope permeability. Nature 254: 109–114

    Article  PubMed  CAS  Google Scholar 

  • Pemberton LF, Rout MP, Blobel G (1995) Disruption of the nucleoporin gene NUP133 results in clustering of nuclear pore complexes. Proc Natl Acad Sci USA 92: 1187–1191

    Article  PubMed  CAS  Google Scholar 

  • Pemberton LF, Rosenblum JS, Blobel G (1997) A distinct and parallel pathway for the nuclear import of an mRNA-binding protein. J Cell Biol 139: 1645–1653

    Article  PubMed  CAS  Google Scholar 

  • Pemberton LF, Blobel G, Rosenblum IS (1998) Transport routes through the nuclear pore complex. Curr Opin Cell Biol 10: 392–399

    Article  PubMed  CAS  Google Scholar 

  • Radu A, Blobel G, Moore MS (1995) Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleoporins. Proc Natl Acad Sci USA 92: 1769–1773

    Article  PubMed  CAS  Google Scholar 

  • Rexach M, Blobel G (1995) Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83: 683–692

    Article  PubMed  CAS  Google Scholar 

  • Ris H (1991) The three dimensional structure of the nuclear pore complexes as seen by high voltage electron microscopy and high resolution low voltage scanning electron microscopy. EMSA Bull 21: 54–56

    Google Scholar 

  • Ris H (1997) High-resolution field-emission scanning electron microscopy of nuclear pore complex. Scanning 19: 368–375

    Article  PubMed  CAS  Google Scholar 

  • Rout MP, Blobel G (1993) Isolation of the nuclear pore complex. J Cell Biol 123: 771–783

    Article  PubMed  CAS  Google Scholar 

  • Rout MP, Wente SR (1994) Pores for thought: nuclear pore complex proteins. Trends Cell Biol 4: 357–365

    Article  PubMed  CAS  Google Scholar 

  • Rout MP, Blobel G, Aitchison JD (1997) A distinct nuclear import pathway used by ribosomal proteins. Cell 89: 715–725

    Article  PubMed  CAS  Google Scholar 

  • Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148: 635–651

    Article  PubMed  CAS  Google Scholar 

  • Ryan KJ, Wente SR (2000) The nuclear pore complex: a protein machine bridging the nucleus and cytoplasm [In process citation]. Curr Opin Cell Biol 12: 361–371

    Article  PubMed  CAS  Google Scholar 

  • Schlaich NL, Hurt EC (1995) Analysis of nucleocytoplasmic transport and nuclear envelope structure in yeast disrupted for the gene encoding the nuclear pore protein Nuplp. Eur J Cell Biol 67: 8–14

    PubMed  CAS  Google Scholar 

  • Schlaich NL, Haner M, Lustig A, Aebi U, Hurt EC (1997) In vitro reconstitution of a heterotrimeric nucleoporin complex consisting of recombinant Nsplp, Nup49p, and Nup57p. Mol Biol Cell 8: 33–46

    PubMed  CAS  Google Scholar 

  • Schwoebel ED, Talcott B, Cushman I, Moore MS (1998) Ran-dependent signal-mediated nuclear import does not require GTP hydrolysis by Ran. J Biol Chem 273: 35170–35175

    Article  PubMed  CAS  Google Scholar 

  • Seedorf M, Damelin M, Kahana J, Taura T, Silver P (1999) Interactions between a nuclear transporter and a subset of nuclear pore complex proteins depend on Ran GTPase. Mol Cell Biol 19: 1547–1557

    PubMed  CAS  Google Scholar 

  • Shah S, Tugendreich S, Forbes D (1998) Major binding sites for the nuclear import receptor are the internal nucleoporin Nup153 and the adjacent nuclear filament protein Tpr. J Cell Biol 141: 31–49

    Article  PubMed  CAS  Google Scholar 

  • Shulga N, Mosammaparast N, Wozniak R, Goldfarb DS (2000) Yeast nucleoporins involved in passive nuclear envelope permeability (in process citation). J Cell Biol 149: 1027–1038

    Article  PubMed  CAS  Google Scholar 

  • Siniossoglou S, Wimmer C, Rieger M, Doye V, Tekotte H, Weise C, Emig S, Segref A, Hurt EC (1996) A novel complex of nucleoporins, which includes Secl3p and a Secl3p homolog, is essential for normal nuclear pores. Cell 84: 265–275

    Article  PubMed  CAS  Google Scholar 

  • Siniossoglou S, Santos-Rosa H, Rappsilber J, Mann M, Hurt E (1998) A novel complex of membrane proteins required for formation of a spherical nucleus. EMBO J 17: 6449–6464

    Article  PubMed  CAS  Google Scholar 

  • Siniossoglou S, Lutzmann M, Santos-Rosa H, Leonard K, Mueller S, Aebi U, Hurt E (2000)

    Google Scholar 

  • Structure and assembly of the Nup84p complex. J Cell Biol 149:41–54

    Google Scholar 

  • Solsbacher J, Maurer P, Bischoff FR, Schlenstedt G (1998) Cselp is involved in export of yeast importin alpha from the nucleus. Mol Cell Biol 18: 6805–6815

    PubMed  CAS  Google Scholar 

  • Strahm Y, Fahrenkrog B, Zenklusen D, Rychner E, Kantor J, Rosbach M, Stutz F (1999) The RNA export factor Glelp is located on the cytoplasmic fibrils of the NPC and physically interacts with the FG-nucleoporin Riplp, the DEAD-box protein Rat8p/Dbp5p and a new protein Ymr 255p. EMBO J 18: 5761–5777

    Article  PubMed  CAS  Google Scholar 

  • Strambio-de-Castillia C, Blobel G, Rout MP (1995) Isolation and characterization of nuclear envelopes from the yeast Saccharomyces. J Cell Biol 131: 19–31

    CAS  Google Scholar 

  • Strambio-de-Castillia C, Blobel G, Rout MP (1999) Proteins connecting the nuclear pore complex with the nuclear interior. J Cell Biol 144: 839–855

    Article  PubMed  CAS  Google Scholar 

  • Stutz F, Kantor J, Zhang D, McCarthy T, Neville M, Rosbash M (1997) The yeast nucleoporin rip 1p contributes to multiple export pathways with no essential role for its FG-repeat region. Genes Dev 11: 2857–2868

    Article  PubMed  CAS  Google Scholar 

  • Tcheperegine SE, Marelli M, Wozniak RW (1999) Topology and functional domains of the yeast pore membrane protein Pom152p. J Biol Chem 274: 5252–5258

    Article  PubMed  CAS  Google Scholar 

  • Titov AA, Blobel G (1999) The karyopherin Kap122p/Pdr6p imports both subunits of the transcription factor IIA into the nucleus. J Cell Biol 147: 235–246

    Article  PubMed  CAS  Google Scholar 

  • Unwin PN, Milligan RA (1982) A large particle associated with the perimeter of the nuclear pore complex. J Cell Biol 93: 63–75

    Article  PubMed  CAS  Google Scholar 

  • Wente SR (2000) Gatekeepers of the nucleus. Science 288: 1374–1377

    Article  PubMed  CAS  Google Scholar 

  • Wente SR, Blobel G (1994) NUP145 encodes a novel yeast glycine-leucine-phenylalanine-glycine ( GLFG) nucleoporin required for nuclear envelope structure. J Cell Biol 125: 955–969

    Google Scholar 

  • Wente SR, Gasser SM, Caplan AJ (1998) The nucleus and nucleocytoplasmic transport in Saccharomyces cerevisiae. In: Broach JR, Jones E, Pringle J (eds) The molecular and cellular biology of the yeast Saccharomyces. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  • Winey M, Hoyt MA, Chan C, Goetsch L, Botstein D (1993) NDC1: a nuclear periphery component required for yeast spindle pole body duplication. J Cell Biol 122: 743–751

    Article  PubMed  CAS  Google Scholar 

  • Winey M, Yarar D, Giddings TH Jr, Mastronarde DN (1997) Nuclear pore complex number and distribution throughout the Saccharomyces cerevisiae cell cycle by three-dimensional reconstruction from electron micrographs of nuclear envelopes. Mol Biol Cell 8: 2119–2132

    PubMed  CAS  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Davis RW et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285: 901–906

    Article  PubMed  CAS  Google Scholar 

  • Wozniak RW, Blobel G, Rout MP (1994) P0M152 is an integral membrane protein of the pore membrane domain of the nuclear envelope. J Cell Biol 125: 31–42

    Article  PubMed  CAS  Google Scholar 

  • Wozniak RW, Rout MP, Aitchison JD (1998) Karyopherins and kissing cousins. Trends Cell Biol 8: 184–188

    Article  PubMed  CAS  Google Scholar 

  • Xing Y, Johnson CV, Dobner PR, Lawrence JB (1993) Higher level organization of individual gene transcription and RNA splicing. Science 259: 1326–1330

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Rout MP, Akey CW (1998) Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Mol Cell 1: 223–234

    Article  PubMed  CAS  Google Scholar 

  • Zabel U, Doye V, Tekotte H, Wepf R, Grandi P, Hurt EC (1996) Nic96p is required for nuclear pore formation and functionally interacts with a novel nucleoporin, Nup188p. J Cell Biol 133: 1141–1152

    Article  PubMed  CAS  Google Scholar 

  • Zachar Z, Kramer J, Mims IP, Bingham PM (1993) Evidence for channeled diffusion of pre-mRNAs during nuclear RNA transport in metazoans. J Cell Biol 121: 729–742

    Article  PubMed  CAS  Google Scholar 

  • Zimowska G, Aris JP, Paddy MR (1997) A Drosophila Tpr protein homolog is localized both in the extrachromosomal channel network and to nuclear pore complexes. J Cell Sci 110: 927–944

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strambio-de-Castillia, C., Rout, M.P. (2002). The Structure and Composition of the Yeast NPC. In: Weis, K. (eds) Nuclear Transport. Results and Problems in Cell Differentiation, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44603-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44603-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53608-3

  • Online ISBN: 978-3-540-44603-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics