Skip to main content

Numerical Methods for weakly compressible reactive Flows

  • Conference paper
Numerical Flow Simulation II

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NNFM,volume 75))

  • 257 Accesses

Summary

A numerical method is outlined for reactive and non reactive flows in the regime of a vanishing Mach number. Laminar flames are treated as reactive discountinuities by which burnt and unburnt gas is separated. This approach requires to explicitly prescribe the laminar burning velocity Si which is the speed of the flame relative to the unburnt gas. A level set representation of the flame front is used to describe the dynamical behaviour of the front and to obtain geometric information of the front such as normal vectors and local curvature etc. in an easy way. As the laminar burning velocity vanishes (s l ↦ 0) the front becomes a material interface which can be treated by the proposed method as well. The finite volume method is fully conservative and is based upon a projection method. Special attention was paid to design a very simple but efficient numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almgren, A. S., Bell, J. B. And Szymczak, W. G., A Numerical Method for the Incompressible Navier-Stokes Equation Based on an Approximate Projection, SIAM Journal of Scientific Computing, 17 (2), 358–369, 1996

    Article  MathSciNet  MATH  Google Scholar 

  2. Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H. And Welcome, M. L., A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations, Journal of Computational Physics, 142, 1–46, 1998

    Article  MathSciNet  MATH  Google Scholar 

  3. Almgren, A. S., Bell, J. B. and Crutchfield, W. Y., Approximate Projection Methods: Part I. Inviscid Analysis, eingereicht zur Veröffentlichung in SIAM Journal on Scientific Computing, erhältlich als Vorabdruck: Ernest Orlando Lawrence Berkeley National Laboratory LBNL-43374, Mai 1999

    Google Scholar 

  4. Bell, J. B., Colella, P. AND Glaz, H. M., A second order projection method for the incompressible Navier-Stokes equations, Journal of Computational Physics, 85, 257–283, 1989

    Article  MathSciNet  MATH  Google Scholar 

  5. Bell, J. B. And Marcus, D., A second order projection method for variable density flows, Journal of Computational Physics, 101, 334–348, 1992

    Article  MATH  Google Scholar 

  6. Bhaga, D. And Weber, M. E., Bubbles in viscous liquids: shapes, wakes and velocities, Journal of Fluid Mechanics, 105, 61–85, 1981

    Article  Google Scholar 

  7. Bourlioux, A., A Coupled Level-Set Volume-Of-Fluid Algorithm for Tracking Material Interfaces, 3rd Annual Conference of the CFD Society of Canada, June 25–27, 1995, Banff, Alberta, Canada

    Google Scholar 

  8. Chorin, A. J., A Numerical Method for Solving Incompressible Viscous Flow Problems, Journal of Computational Physics, 2, 12–26, 1967

    Article  MATH  Google Scholar 

  9. Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comput., 22, 745–762, October 1968

    Article  MathSciNet  MATH  Google Scholar 

  10. Chopp, D. L., Computing Minimal Surfaces via Level Set Curvature Flow, Journal of Computational Physics, 106, 77–91, 1993

    Article  MathSciNet  MATH  Google Scholar 

  11. Clanet, C. And Searby, G., On the tulip flame phenomenon, Combustion Science and Technology, 105, 225–238, 1996

    Google Scholar 

  12. Hnat, J. G. And Buckmaster, J. D., Spherical cap bubbles and skirt formation, The Physics of Fluids, 19, 2: 182, 1976

    Article  MATH  Google Scholar 

  13. Klainerman, S Und Majda, A. J., Compressible and Incompressible Fluids, Commun Pure Appl. Math, 35, 629, 1982

    MathSciNet  MATH  Google Scholar 

  14. Klein, R., Semi-Implicit Extension of a Godunov-Type Scheme Based on Low Mach Number Asymptotics I: One-Dimensional Flow, Journal of Computational Physics, 121, 213–237, 1995

    Article  MathSciNet  MATH  Google Scholar 

  15. Kickinger, F., Algebraic Multigrid for Discrete Elliptic Second Order Problems, Institutsbericht 513, Institut für Mathematik, Universität Linz, Österreich, März 1997

    Google Scholar 

  16. Majda, A. Und Sethian, J., The Derivation and Numerical Solution of the Equations for Zero Mach number Combustion, Combustion Science and Technology, 42, 185–205, 1985

    Article  Google Scholar 

  17. Markstein, G. H., Nonsteady Flame Propagation, Kapitel B, Theory of Flame Propagation, Pergamon Press, 1964

    Google Scholar 

  18. Matalon, M. Und Matkowsky, B. J., Flames as gasdynamic discontinuities, Journal of Fluid Mechanics, 124, 239–259, 1982

    Article  MATH  Google Scholar 

  19. Münz, C.-D., Roller, S., Klein, R. Und Geratz, K.J. Extension of Incompressible Flow Solvers to the Weakly Compressible Regime, eingereicht zur Veröffentlichung bei Theoretic. and Comput. Modelling, 1997

    Google Scholar 

  20. Schochet, S., Asymptotics for symmetric hyperbolic systems with a large parameter, Journal of Differential Equations, 75, 1–27, 1988

    Article  MathSciNet  MATH  Google Scholar 

  21. Schneider, T, Botta, N, Geratz, K. J. und Klein, R., Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density zero Mach Number Flow, Journal of Computational Physics, 155, 248–286, 1999

    Article  MathSciNet  MATH  Google Scholar 

  22. Schneider, TH., Klein, R., Besnoin, E. und Knio, O. M., Computational analysis of a thermoacoustic refrigerator, Joint meeting: ASA/EAA/DEGA, 1999, Berlin, Deutschland

    Google Scholar 

  23. Schneider, TH. und Klein, R., Overcoming mass losses in Level Set-based interface tracking schemes, Second International Symposium on Finite Volumes for Complex Applications -Problems and Perspectives-, 19.-22. Juli, 1999, Duisburg, Deutschland

    Google Scholar 

  24. Schneider, TH., Terhoeven, P and Klein R., A cell centered fully conservative projection method for zero Mach number variable density flows,in preparation for submission to the Journal of Computational Physics

    Google Scholar 

  25. Smiljanovski, V., Moser, V. und Klein, R., A Capturing-Tracking Hybrid Scheme for Deflagration Discontinuities, Journal of Combustion Theory and Modelling, 2 (1): 183–215, 1997

    Article  Google Scholar 

  26. Sussman, M., Smereka, P. und Osher, S., A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, Journal of Computational Physics, 114, 146–159, 1994

    Article  MATH  Google Scholar 

  27. Temam, R., Sur l’approximation de la solution des equations de Navier-Stokes par le methode des fractionaire ii., Arch. R.tional Mech. Anal., 33, 377–385, 1969

    MathSciNet  MATH  Google Scholar 

  28. Terhoeven, P., Ein numerisches Verfahren zur Berechnung von Flammenfronten bei kleiner Mach-Zahl, Dissertation, RWTH-Aachen, Deutschland, 1998

    Google Scholar 

  29. Worlikar, S. A. und Knio O. M., Numerical Simulation of a thermoacoustic refrigerator–I. Unsteady Adiabatic Flow around the Stack, Journal of Computational Physics, 127, 424–451, 1996

    Article  MATH  Google Scholar 

  30. Worlikar, S. A., Knio O. M. und Klein, R., Numerical Simulation of a thermoacoustic refrigerator–II. Stratified Flow around the Stack, Journal of Computational Physics, 144, 299–324, 1998

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schneider, T., Klein, R., Fortenbach, R., Munz, CD. (2001). Numerical Methods for weakly compressible reactive Flows. In: Hirschel, E.H. (eds) Numerical Flow Simulation II. Notes on Numerical Fluid Mechanics (NNFM), vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44567-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44567-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07485-1

  • Online ISBN: 978-3-540-44567-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics