Skip to main content

The GUHA Method, Data Preprocessing and Mining

  • Chapter

Part of the Lecture Notes in Computer Science book series (LNCS,volume 2682)

Abstract

The paper surveys basic principles and foundations of the GUHA method, relation to some well-known data mining systems, main publications, existing implementations and future plans.

Keywords

  • Data Mining
  • Association Rule
  • Data Matrix
  • Deduction Rule
  • Logical Calculus

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-44497-8_7
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-44497-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Manilla, H., Sukent, R., Toivonen, A., Verkamo, A.: Fast discovery of Association rules. In: Advance in Knowledge Discovery and Data Mining, pp. 307–328. AAAI, Menlo Park (1996)

    Google Scholar 

  2. Coufal, D., Holeňa, M., Sochorová, A.: Coping with Discovery Challenge by GUHA. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 7–16. Springer, Heidelberg (1999)

    Google Scholar 

  3. Coufal, D.: GUHA Analysis of Air Pollution Data. In: Kurková, V., Steele, N.C., Neruda, R., Kárný, M. (eds.) Artificial Neural Nets and Genetic Algorithms. Proceedings of the International conference ICANNGA 2001, Prague, pp. 465–468. Springer, Wien (2001)

    Google Scholar 

  4. Dolejší, P., Lín, V., Rauch, J., Šebek, M.: System of KDD Tasks and Results within the STULONG Project. In: Berka (ed.) Discovery Challenge Workshop Notes, University Helsinki (2002)

    Google Scholar 

  5. Džeroski, S., Lavrač, N. (eds.): Relational Data Mining, p. 398. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  6. Feglar, T.: The GUHA architecture. In: Proc. Relmics, Tilburg (The Netherlands), vol. 6, pp. 358–364.

    Google Scholar 

  7. Feglar, T.: The GUHA Virtual Machine - Frameworks and Key Concept - Frameworks and Key Concept, Research Report COST 274 (2001)

    Google Scholar 

  8. Feglar, T.: Modeling of a Engine Based Approach to the Decision Support. In: Proceedings of ADBIS 2002 Conference, Research Communications, vol. 2, Bratislava, September 2002, pp. 98–107 (2002)

    Google Scholar 

  9. Hájek, P.: On generalized quantifiers, finite sets and data mining. In: Accepted for presentation on the conference IIS 2003 (Intelligent Information Systems), Zakopane, Poland (June 2–5, 2003)

    Google Scholar 

  10. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    CrossRef  MATH  Google Scholar 

  11. Hájek, P.: Relations in GUHA-style data mining. In: de Swart, H. (ed.) RelMiCS 2001. LNCS, vol. 2561, p. 81. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  12. Hájek, P.: The GUHA method and mining association rules. In: Proc. CIMA 2001, Bangor, Wales, pp. 533–539 (2001)

    Google Scholar 

  13. Hájek, P.: The new version of the GUHA procedure ASSOC. In: COMPSTAT 1984, pp. 360–365 (1984)

    Google Scholar 

  14. Hájek, P., Havel, I., Chytil, M.: The GUHA method of automatic hypotheses determination. Computing 1, 293–308 (1966)

    CrossRef  MATH  Google Scholar 

  15. Hájek, P., Havránek, T.: Mechanizing Hypothesis Formation (Mathematical Foundations for a General Theory), p. 396. Springer, Heidelberg (1978)

    CrossRef  MATH  Google Scholar 

  16. Hájek, P., Havránek, T.: Mechanizing Hypothesis Formation (Mathematical Foundations for a General Theory), Internet edn., http://www.cs.cas.cz/~hajek/guhabook/

  17. Hájek, P., Holeňa, M.: Formal logics of discovery and hypothesis formation by machine. Theoretical Computer Science (to appear)

    Google Scholar 

  18. Hájek, P.(guest ed.): International Journal of Man-Machine Studies, 10(1) (special issue on GUHA). Introductory paper of the volume is Hájek, Havránek: The GUHA method - its aims and techniques. Int. J. Man-Machine Studies 10, 3–22 (1977)

    Google Scholar 

  19. Hájek, P.(guest ed.): International Journal for Man-Machine Studies.  15(3) (second special issue on GUHA)

    Google Scholar 

  20. Hájek, P., Sochorová, A., Zvárová, J.: GUHA for personal computers. Comp. Stat., Data Arch. 19, 149–153

    Google Scholar 

  21. Hálová, J., Feglar, T.: Systematic approach to the choice of optimum variant of radioactive waste management. In: Proceedings of 6th ISAHP 2001 Conference, Berne, Switzeland, August 2001, pp. 139–144 (2001)

    Google Scholar 

  22. Hálová, J., Žák, P.: Coping Discovery challenge of mutagenes discovery with GUHA+/− for windows. In: The Fourth Pacific-Asia Conference on Knowledge Discovery and Data Mining. Workshop KDD Challenge 2000. International Workshop on KDD Challenge on Real-world Data, Kyoto, pp. 55–60 (2000); Pacific-Asia Conference on Knowledge Discovery and Data Mining /4./, Kyoto, Japan

    Google Scholar 

  23. Hálová, J., Žák, P.: Drug Tailoring by GUHA +/− for Windows. In: Challenges for MCDM in the New Millenium, Ankara, Middle East Technical University, p. 50 (2000), International Conference MCDM /15./, Ankara, Turkey

    Google Scholar 

  24. Hálová, J., Žák, P.: Fingerprint Descriptors in Tailoring New Drugs Using GUHA Method. In: 51th Meeting of the European Working Group Multicriteria Aid for Decisions. Program and Abstracts, Madrid, p. 25 (2000), Meeting of European Working Group Multicriteria Aid for Decisions /51./, Madrid, Spain, 00.03.30-00.03.3

    Google Scholar 

  25. Havránek, T.: The statistical modification ond interpretation of GUHA method. Kybernetika 7, 13–21 (1971)

    MathSciNet  MATH  Google Scholar 

  26. Holeňa, M.: Fuzzy hypotheses for GUHA implications. In: Fuzzy Sets and Systems, vol. 98, pp. 101–125 (1998)

    Google Scholar 

  27. Holeňa, M.: Exploratory data processing using a fuzzy generalization of the GUHA approach. In: Baldwin, et al. (eds.) Fuzzy Logic, pp. 213–229. Willey et Sons, New York (1996)

    Google Scholar 

  28. Holubec jr., L., Topolcan, O., Pikner, R., Pecen, L., Holubec, L., sen, Fínek, J., Ludvíková, M.: Discriminative Level of Tumor Markers after Primary Therapy in Colorectal Carcinoma Patients. In: ISOBM Meeting. Abstract Book, Barcelona, p. 173 (2001)

    Google Scholar 

  29. Lin, W., Alvarez, S.A., Ruiz, C.: Collaborative recommendation via adaptive association rule mining. In: Web-KDD 2000 (2000)

    Google Scholar 

  30. Pecen, L., Pelikán, E., Beran, H., Pivka, D.: Short-term fx market analysis and prediction. In: Neural Networks in Financial Engeneering, pp. 189–196 (1996)

    Google Scholar 

  31. Rauch, J.: Some Remarks on Computer Realisations of GUHA Procedures. International Journal of Man-Machine Studies 10, 23–28 (1978)

    CrossRef  Google Scholar 

  32. Pokorný, D., Rauch, J.: The GUHA-DBS Data Base System. Int. Journ. Math. Machine Studies 15, 289–298 (1981)

    CrossRef  Google Scholar 

  33. Rauch, J.: Logical foundations of mechanizing hypothesis formation from databases (in Czech). PhD. thesis, Mathematical Institute of the Czechoslovak academy of Sciences (1986)

    Google Scholar 

  34. Rauch, J.: Logical problems of statistical data analysis in databases. In: Proc. Eleventh Int. Seminar on Database Management Systems, pp. 53–63 (1988)

    Google Scholar 

  35. Rauch, J.: Logical Calculi for Knowledge Discovery. In: Komorowski, J., Zytkow, J. (eds.) Red, pp. 47–57. Springer, Berlin (1997)

    Google Scholar 

  36. Rauch, J.: Contribution to Logical Foundations of KDD (in Czech). Assoc. Prof. Thesis, Faculty of Informatics and Statistics, University of Economics Prague (1998)

    Google Scholar 

  37. Rauch, J.: Classes of Four-Fold Table Quantifiers. In: Zytkow, J., Quafafou, M. (eds.) Principles of Data Mining and Knowledge Discovery, pp. 203–211. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  38. Rauch, J.: Four-Fold Table Calculi and Missing Information. In: Wang, P.P. (ed.) JCIS 1998 Proceedings, Association for Intelligent Machinery, pp. 375–378 (1998)

    Google Scholar 

  39. Rauch, J., Šimunek, M.: Mining for 4ft association rules. In: Proc. Discovery Science 2000, Kyoto, pp. 268–272. Springer, Heidelberg (2000)

    Google Scholar 

  40. Rauch, J.: Interesting Association Rules and Multi-relational Association Rules. In: Communications of Institute of Information and Computing Machinery, Taiwan, May 2002, vol. 5(2), pp. 77–82 (2002)

    Google Scholar 

  41. Rauch, J.: Mining for Scientific Hypotheses. In: Meij, J. (ed.) Dealing with the data flood. Mining Data, Text and Multimedia, STT/Beweton, The Hague, pp. 73–84 (2002)

    Google Scholar 

  42. Rauch, J., Šimunek, M.: Alternative approach to Mining Association Rules. In: Lin, T.Y., Ohsuga, S. (eds.) IEEE ICDM 2002 Workshop Proceedings The Foundation of Data Mining and Knowledge Discovery, pp. 157–162 (2002)

    Google Scholar 

  43. Šebesta, V., Straka, L.: Determination of Suitable Markers by the GUHA Method for the Prediction of Bleeding at Patients with Chronic Lymphoblastic Leukemia. In: Medicon 1998, Mediterranean Conference on Medical and Biological Engineering and Computing /8./, Lemesos, Cyprus (1998)

    Google Scholar 

  44. Šimunek, M.: Academic KDD Project LISp-Miner. In: Šimunek, M. (ed.) Accepted for publication at Intelligent Systems Design and Applications (ISDA 2003), Tulsa, Oklahoma (2003)

    Google Scholar 

  45. Strossa, P., Rauch, J.: Converting Association Rules into Natural Language - an Attempt. In: Accepted for the presentation at the conference IIS 2003 (Intelligent Information Systems), Zakopane, Poland, June 2–5 (2003)

    Google Scholar 

  46. GUHA+- project, http://www.cs.cas.cz/ics/software.html

  47. LISp-Miner system, http://lispminer.vse.cz

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hájek, P., Rauch, J., Coufal, D., Feglar, T. (2004). The GUHA Method, Data Preprocessing and Mining. In: Meo, R., Lanzi, P.L., Klemettinen, M. (eds) Database Support for Data Mining Applications. Lecture Notes in Computer Science(), vol 2682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44497-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44497-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22479-2

  • Online ISBN: 978-3-540-44497-8

  • eBook Packages: Springer Book Archive