Skip to main content

Measurement of Mass and Beta-Lifetime of Stored Exotic Nuclei

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 651))

Abstract

In this lecture, the basic techniques and concepts of ion storage-cooler rings are first presented, such as storing, beam-focusing and beam-cooling. In particular the main facets of electron cooling will be discussed, the cooling method being most successfully exploited in all operational ion storage-cooler rings. In the second part it will be demonstrated why and how an ion cooler-ring connected with a device producing exotic nuclei -as the coupled experimental storage ring (ESR) and fragment separator (FRS) at GSI in Darmstadt- is a unique tool to provide efficiently, precisely and with unrivalled sensitivity the ground-state properties of exotic nuclei, i.e. mass and (beta) lifetime. They are the basic and necessary ingredients for redrawing the pathways of stellar nucleosynthesis in the s-, rp- and r- processes, and also for exploring the limits of nuclear stability at both the proton and the neutron drip line, which directly reflects the deep entanglement of nuclear astrophysics on the one hand and of nuclear structure on the other. The two complementary methods of mass measurements, ‘Schottky mass spectrometry’ for longer-lived and ‘isochronous mass spectrometry’ for short-lived exotic nuclei, are visualized by plenty of data. Both methods were first developed and successfully applied at the ESR. In the last part of the lecture the unique worldwide potential of the ESR is demonstrated, namely the measurement of beta decays of highly-charged exotic ions, including the first observation of bound-state beta decay. This exotic mode of beta decay, being marginal for neutral atoms, becomes important in hot stellar plasmas during nucleosynthesis. As a striking example the impact of bound-state beta decay for the nuclear ‘eon clock’ 187Re/187Os and, connected therewith, for the determination of the age of our milky way galaxy and of the universe will be outlined.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. B. Franzke: Nucl. Instr. Meth. B 24, 18 (1987)

    Google Scholar 

  • 2. H. Geissel et al.: Nucl. Instr. Meth. B 70, 247 (1992)

    Google Scholar 

  • 3. W. Magnus, S. Winkler: ‘Hills Equations’, Dover, New York (1979)

    Google Scholar 

  • 4. D. Nesvorny et al.: Asteroids III, 379 (2002)

    Google Scholar 

  • 5. H. Wu: ‘Complex Analysis III’, Lectures Notes in Math., Springer, Berlin (1987)

    Google Scholar 

  • 6. H.J. Metcalf, P. van de Straten: ‘Laser Cooling an Trapping’, Springer, New York (1999)

    Google Scholar 

  • 7. M.H. Anderson et al.: Science 269, 198 (1995)

    Google Scholar 

  • 8. D. Habs, R. Grimm: Ann. Rev. Nucl. Part. Sci. 45, 391 (1995)

    Article  Google Scholar 

  • 9. I. Klaft et al.: Phys. Rev. Lett. 73, 2425 (1994)

    Article  Google Scholar 

  • 10. S. van der Meer: Nobel lecture 1984, in: Les Prix Nobel 1984, ed. Nobel Foundation, p. 102

    Google Scholar 

  • 11. F. Nolden: private communication

    Google Scholar 

  • 12. M. Steck: J. Opt. Soc. America B 20 no. 5, 1016 (2002)

    Google Scholar 

  • 13. G.I. Budker: At. Energy 22, 346 (1967)

    Google Scholar 

  • 14. G.I. Budker in: ‘Proc. of the Int. Symp. on Electron and Positron Storage Rings’, Saclay 1966, eds. H. Zyngier and E. Crémieux-Alean: PUF, Paris (1967), II-1-1, pp. 1–15

    Google Scholar 

  • 15. H. Poth: ‘Electron cooling. theory, experiment, application’, in: Phys. Rep. 196, 135 (1990)

    Google Scholar 

  • 16. H. Danared et al.: Phys. Rev. Lett. 72, 3775 (1994)

    Article  Google Scholar 

  • 17. M. Steck et al.: Phys. Rev. Lett. 77, 3803 (1996)

    Article  Google Scholar 

  • 18. E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle: Rev. Mod. Phys. 29, 547 (1957)

    Article  Google Scholar 

  • 19. Z.Y. Bao, F. Käppeler: Atomic Data Nucl. Data Tables 26, 411 (1987)

    Google Scholar 

  • 20. C. Freiburghaus et al.: Astrophys. J. 516, 381 (1999)

    Article  Google Scholar 

  • 21. H. Schatz et al.: Phys. Rep. 294, 167 (1998)

    Article  Google Scholar 

  • 22. F. Käppeler, F.-K. Thielemann, M. Wiescher: Ann. Rev. Nucl. Part. Sci. 48, 175 (1999)

    Article  Google Scholar 

  • 23. B. Pfeiffer, K.-L. Kratz, F.K. Thielemann: Z. Phys. A 357, 235 (1997)

    Article  Google Scholar 

  • 24. D.J. Morrissey, B.M. Sherrill: In-Flight Separation of Projectile Fragments, Lect. Notes Phys. 651, 113–135 (2004)

    Google Scholar 

  • 25. H. Geissel et al.: Nucl. Phys. A 701, 259c (2002)

    Article  Google Scholar 

  • 26. C. Scheidenberger: private communication

    Google Scholar 

  • 27. T.  Radon et al.: Nucl. Phys. A 677, 75 (2000)

    Article  Google Scholar 

  • 28. F. Attallah et al.: Nucl. Phys. A 701, 561c (2002)

    Article  Google Scholar 

  • 29. M. Hausmann et al.: Nucl. Instr. Meth. A 446, 569 (2000)

    Google Scholar 

  • 30. Yu.A. Litvinov et al.: Hyperfine Interactions 132, 283 (2001)

    Google Scholar 

  • 31. J. Stadlmann et al. in: Proc. STORI99, AIP Conf. Proc. 512, 305 (2000)

    Google Scholar 

  • 32. M. Jung et al.: Phys. Rev. Lett. 69, 2164 (1992)

    Article  Google Scholar 

  • 33. K. Takahashi, K. Yokoi: Atomic Data Nucl. Data Tables 26, 375 (1987)

    Google Scholar 

  • 34. S. Perlmutter et al.: Astrophys. J. 517, 565 (1999); J. Glanz. Science 282 (1998)

    Article  Google Scholar 

  • 35. F. Bosch: ‘Rhenium-187 and the age of the galaxy’ in: AIP Conf. Proc. 477, 16 (1999); and ICAP, Windsor, Canada, 1998, ed. by W.E. Baylis, G.W.F. Drake, pp. 344–360

    Google Scholar 

  • 36. D.A. Vandenberg et al.: Ann. Rev. Astron. and Astrophys. 34, 461 (1996)

    Article  Google Scholar 

  • 37. E. Anders et al.: Geochim. Cosmochim. Acta 53, 197 (1989)

    Article  Google Scholar 

  • 38. K. Yokoi, K. Takahashi, M. Arnould: Astron. and Astrophys. J. 117, 65 (1983)

    Google Scholar 

  • 39. E.M.D. Symbalisty, D.N. Schramm: Rep. Prog. Phys. 44, 293 (1981)

    Article  Google Scholar 

  • 40. K. Takahashi, K. Yokoi: Nucl. Phys. A 404, 578 (1983)

    Article  Google Scholar 

  • 41. K. Takahashi, K. Yokoi: Phys. Rev. C 36, 1522 (1987)

    Article  Google Scholar 

  • 42. F. Bosch et al.: Phys. Rev. Lett 77, 5170 (1996)

    Google Scholar 

  • 43. K. Takahashi: ‘The 187Re-187Os cosmochromometry and chemical evolution in the solar neighborhood’, in: Tours Symp. on Nucl. Phys. III, ed. by M. Arnould et al., AIP Conf. Proc. 425, 616 (1997)

    Google Scholar 

  • 44. H. Behrens, J. Jaenecke: ‘Numerical Tables for β-Decay and Electron Capture’, Landolt-Börnstein, New Series GG1, Vol. 4 (2001)

    Google Scholar 

  • 45. W.F. Henning: ‘Conceptional Design Report’, unpublished, GSI (2001) http://www.gsi.de/GSI-future/cdr/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jim Al-Khalili Ernst Roeckl

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Bosch, F. Measurement of Mass and Beta-Lifetime of Stored Exotic Nuclei. In: Al-Khalili, J., Roeckl, E. (eds) The Euroschool Lectures on Physics with Exotic Beams, Vol. I. Lecture Notes in Physics, vol 651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44490-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44490-9_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22399-3

  • Online ISBN: 978-3-540-44490-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics