Characteristics of Biological Networks

  • Albert-László Barabási
  • Zoltán N. Oltvai
  • Stefan Wuchty
Part IV Biological Networks
Part of the Lecture Notes in Physics book series (LNP, volume 650)


Network principles describe uniformly systems as diverse as the cell or the Internet. The emergence of these networks is driven by self-organizing processes that are governed by simple but generic laws. While unraveling the complex and interwoven systems of different interacting units, it has become clear that the topology of networks of different origin share the same characteristics on the large scale. In biological systems, networks appear in many different disguises ranging from protein interactions to metabolic networks. In this paper, we survey the most prominent characteristics of biological networks focusing on the emergence of scale-free architecture and hierarchical arrangement of functional modules. Finally, we present empirical evidence that cohesive parts of the protein interaction network have a significantly higher tendency to be evolutionary conserved.


Metabolic Network Random Graph Degree Distribution Random Network Biological Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Rev. Mod. Phys., 74:47–97, 2002.Google Scholar
  2. 2. S. N. Dorogovtsev and J. F. F. Mendes. Evolution of Random Networks. Adv. Phys., 51:1079–1187, 2002.Google Scholar
  3. 3. A. Pandey and M. Mann. Proteomics to study genes and genomes. Nature, 405:837 – 846, 2000.Google Scholar
  4. 4. H. Caron, B. van Schaik, M. van der Mee, F. Baas, G. Riggins, P. van Sluis, M.-C. Hermus, R. van Asperen, K. Boon, P. A. Voute, S. Heisterkamp, A. van Kampen, and R. Versteeg. The Human Transcriptome Map: Clustering of Highly Expressed Genes in Chromosomal Domains. Science, 291:1289–1292, 2001.Google Scholar
  5. 5. C.B. Burge. Chipping away at the transcriptome. Nature Genet., 27:232–234, 2001.Google Scholar
  6. 6. M. Flajolet, G. Rotondo, L. Daviet, F. Bergametti, G. Inchauspe, P. Tiollais, C. Transy, and P. Legrain. A genomic approach to the hepatitis c virus. Gene, 242:369–379, 2000.Google Scholar
  7. 7. S. McGraith, T. Holtzman, B. Moss, and S. Fields. Genome-wide analysis of vaccinia virus protein-protein interactions. Proc. Natl. Acad. Sci. USA, 97:4879–4884, 2000.Google Scholar
  8. 8. J.-C. Rain, L. Selig, H. DeReuse, V. Battaglia, C. Reverdy, S. Simon, G. Lenzen, F. Petel, J. Wojcik, V. Schächter, et al. The protein-protein interaction map of Helicobacter pylori. Nature, 409:211–215, 2001.Google Scholar
  9. 9. T. Ito, K. Tashiro, S. Muta, R. Ozawa, T. Chiba, M. Nishizawa, K. Yamamoto, S. Kuhara, and Y. Sakaki. Towards a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Nat. Acad. Sci. USA, 97(3):1143–1147, 2000.Google Scholar
  10. 10. T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Nat. Acad. Sci. USA, 98(8):4569–4574, 2001.Google Scholar
  11. 11. B. Schwikowski, P. Uetz, and S. Fields. A network of protein-protein interactions in yeast. Nature Biotechn., 18:1257–1261, 2000.Google Scholar
  12. 12. P. Uetz, L. Giot, G. Cagney, T.A. Mansfield, R.S Judson, J.R. Knight, D. Lockshorn, V. Narayan, M. Srinivasan, P. Pochart, et al. A comprehensive analysis of protein-protein interactions of Saccharomyces cerevisiae. Nature, 403:623–627, 2000.Google Scholar
  13. 13. A.C. Gavin, M. Bösche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J.M. Rick, A.-M. Michon, C.-M. Cruciat, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415:141–147, 2002.Google Scholar
  14. 14. Y. Ho, A. Gruhler, A. Heilbut, G.D. Bader, L. Moore, S.-L. Adams, A. Millar, P. Taylor, K. Bennett, K. Boutillier, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature, 415:180 – 183, 2002.Google Scholar
  15. 15. H. Jeong, S.P. Mason, A.-L. Barabási, and Z.N. Oltvai. Lethality and centrality in protein networks. Nature, 411:41–42, 2001.Google Scholar
  16. 16. A.J.M. Walhout, R. Sordella, X.W. Lu, J.L. Hartley, G.F. Temple, M.A. Brasch, N. Thierry-Mieg, and M. Vidal. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science, 287:116–122, 2000.Google Scholar
  17. 17. S. Li, C.M. Armstrong, N. Bertin, H. Ge, S. Milstein, M. Boxem, P.-O. Vidalain, J.-D.J. Han, A. Chesneau, T. Ha, et al. A map of the interactome network of the metazoan C. elegans. Science, 303:540–543, 2004.Google Scholar
  18. 18. L. Giot, J.S. Bader, C. Brouwer, A. Chaudhuri, B. Kuang, Y. Li, Y.L. Hao, C.E. Ooi, B. Godwin, E. Vitols, et al. A protein interaction map of Drosophila melanogaster. Science, 302:1727–1736, 2004.Google Scholar
  19. 19. S. Wuchty. Interaction and Domain Networks of Yeast. Proteomics, 2:1715–1723, 2002.Google Scholar
  20. 20. A. Wagner. The Yeast Protein Interaction Network Evolves Rapidly and Contains Few Redundant Duplicate Genes. Mol. Biol. Evol, 18(7):1283–1292, 2001.Google Scholar
  21. 21. R. Overbeek, N. Larsen, G.D. Pusch, M. D’Souza, E. Selkov Jr, N. Kyrpides, M. Fonstein, N. Maltsev, and E. Selkov. WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res., 28:123–125, 2000.Google Scholar
  22. 22. P. D. Karp, M. Riley, M. Saier, I.T. Paulsen, S.M. Paley, and A. Pellegrini-Toole. The EcoCyc and MetaCyc databases. Nucl. Acids Res., 28:56–59, 2000.Google Scholar
  23. 23. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.-L. Barabási. The large-scale organization of metabolic networks. Nature, 407:651–654, 2000.Google Scholar
  24. 24. D.A. Fell and A. Wagner. The small world of metabolism. Nature Biotech., 189:1121–1122, 2000.Google Scholar
  25. 25. A. Wagner and D.A. Fell. The small world inside large metabolic networks. Proc. R. Soc. Lon. B, 268:1803–1810, 2001.Google Scholar
  26. 26. S. Milgram. The Small-World Problem. Psychology Today, 2:60–67, 1967.Google Scholar
  27. 27. D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks. Nature, 393:440–442, 1998.Google Scholar
  28. 28. E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, and A.-L. Barabaśi. Hierarchical organization of modularity in metabolic networks. Science, 297:1551–1555, 2002.Google Scholar
  29. 29. E. Ravasz and A.-L. Barabási. Hierarchical Organization in Complex Networks. Phys. Rev. E, 67:026122, 2002.Google Scholar
  30. 30. S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. Pseudofractal Scale-free Web. Phys. Rev. E, 65:066122, 2002.Google Scholar
  31. 31. S. Jung, S. Kim, and B. Kahng. A Geometric Fractal Growth Model for Scale Free Networks. Phys. Rev. E, 65:056101, 2002.Google Scholar
  32. 32. B. Bollobás. Random Graphs. Academic Press, London, 1985.Google Scholar
  33. 33. P. Erdös and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 5:17–61, 1960.Google Scholar
  34. 34. A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509–512, 1999.Google Scholar
  35. 35. A.-L. Barabási, R. Albert, and H. Jeong. Mean-field theory for scale-free random networks. Physica A, 272:173–187, 1999.Google Scholar
  36. 36. R. Albert, H. Jeong, and A.-L. Barabási. Attack and error tolerance of complex networks. Nature, 406:378, 2000.Google Scholar
  37. 37. R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Resilience of the internet to random breakdowns. Phys. Rev. Lett., 85(21):4626–4628, 2000.Google Scholar
  38. 38. R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Breakdown of the internet under intentional attack. Phys. Rev. Lett., 86(16):3682–3685, 2001.Google Scholar
  39. 39. S. H. Yook, Z.N. Oltvai, and A.-L. Barabaśi. Functional and topological characterization of protein interaction networks, 2004. Proteomics, in press.Google Scholar
  40. 40. R. Pastor-Satorras and A. Vespignani. Epidemic spreading in scale-free networks. Phys. Rev. Lett., 86:3200–3203, 2001.Google Scholar
  41. 41. F. Liljeros, C.R. Edling, L.A.N. Amaral, and Y. Aberg. The web of human sexual contacts. Nature, 411:907–908, 2001.Google Scholar
  42. 42. L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray. From molecular to modular cell biology. Nature, 402:C47–C52, 1999.Google Scholar
  43. 43. Y.I. Wolf, G. Karev, and E.V. Koonin. Scale-free networks in biology: new insights into the fundamentals of evolution? Bioessays, 24:105–109, 2002.Google Scholar
  44. 44. D.A. Lauffenburger. Cell signaling pathways as control modules: Complexity for simplicity. Proc. Natl. Acad. Sci. USA, 97:5031–5033, 2000.Google Scholar
  45. 45. S.S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of E.coli. Nature Genet., 31:64 – 68, 2002.Google Scholar
  46. 46. A.-L. Barabási, E. Ravasz, and T. Vicsek. Deterministic scale-free networks. Physica A, 299:559–564, 2001.Google Scholar
  47. 47. A.W. Rives and T. Galitski. Modular organisation of cellular networks. Proc. Natl. Acad. Sci. U.S.A., 100:1128–1133, 2003.Google Scholar
  48. 48. V. Spirin and L. Mirny. Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci. USA, 100:12123–12128, 2003.Google Scholar
  49. 49. S.Y. Gerdes, M.D. Scholle, J.W. Campbell, G. Balázsi, E. Ravasz, M.D. Daugherty, A.L. Somera, N.C. Kyripides, I. Anderson, M.S. Gelfand, et al. Experimental determination and system level analysis of essential genes in Escherichia coli mg1655. J. Bact., 185(19):5673–5684, 2003.Google Scholar
  50. 50. P. Holme, M. Huss, and H. Jeong. Subnetwork hierarchies in biochemical pathways. Bioinformatics, 19(4):532–538, 2003.Google Scholar
  51. 51. M. Girvan and M.E.J. Newman. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA, 99:7821–7826, 2002.Google Scholar
  52. 52. R. Milo, S.S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: Simple building locks of complex networks. Science, 298:824–827, 2002.Google Scholar
  53. 53. I. Xenarios, L. Salwinski, X.J. Duan, P. Higney, S.-M. Kim, and David Eisenberg. Dip, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucl. Acids Res., 30:303–305, 2002.Google Scholar
  54. 54. S. Wuchty, Z.N. Oltvai, and A.-L. Barabási. Evolutionary conservation of motif constituents in the yeast protein interaction network. Nature Genetics, 35:176–179, 2003.Google Scholar
  55. 55. M. Remm, C.E.V. Storm, and E.L. Sonnhammer. Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J. Mol. Biol., 314:1041–1052, 2001.Google Scholar
  56. 56. Z.N. Oltvai and A.-L. Barabási. Life’s Complexity Pyramid. Science, 298:763–764, 2002.Google Scholar
  57. 57. A.-L. Barabási and Z.N. Oltvai. Network biology: Understanding the cells’s functional organization. Nature Rev. Genetics, 5:101–113, 2004.Google Scholar

Authors and Affiliations

  • Albert-László Barabási
    • 1
  • Zoltán N. Oltvai
    • 2
  • Stefan Wuchty
    • 1
  1. 1.Department of Physics, University of Notre Dame, Notre Dame, IN 46556USA
  2. 2.Department of Pathology, Northwestern University, Chicago, IL 60611USA

Personalised recommendations