Skip to main content

Multigrid Methods for Two Phase Flows

  • Chapter

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NNFM,volume 66))

Summary

In this paper we present new Volume of Fluid two phase model with surface tension. The model is based on the staggered, implicit in time Finite Volume discretization of basic equations, using so called rotated elements. Interface adaptive and/or interface aligned deformable grids are reconstructed at each time step with help of the Piecewise Linear Interface Calculation Method. First and second order Langrangian propagation of one fluid with respect to regular mesh is introduced as alternative to the Eulerian split advection algorithm. The simulations of buoyant bubbles are compared with the theoretical predictions and the SURFER code numerical computations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Ashgriz and J. Y. Poo, A Computational Method for Determining Curvatures. J.Comp.Phys., vol. 84, 1989, pp. 483–491.

    Google Scholar 

  2. N. Ashgriz and J. Y. Poo, FLAIR: Flux Line-Segment Model for Advection and Interface Reconstruction. J.Comp.Phys., vol. 93, 1991, pp. 449–468.

    Article  MATH  Google Scholar 

  3. J. U. Brackbill, D. B. Kothe and C. Zemach, A continuum method for modeling surface tension. J.Comp. Phys., vol. 100, 1992, pp. 335–354.

    Google Scholar 

  4. R. Clift, J. R. Grace and M. E. Weber, Bubles, Drops, and Particles. Academic Press, 1978.

    Google Scholar 

  5. B. J. Daly, A technique for Including Surface Tension Effects in Hydrodynamic Calculations. J.Comp. Phys., vol. 4, 1969, pp. 97–117.

    Article  MATH  Google Scholar 

  6. R. C. Darton and D. Harrison, trans.Inst.Chem.Eng., vol. 52, 1974, pp. 301–306.

    Google Scholar 

  7. I.Ginzbourg and G.Wittum, Multigrid methods for interfacial flow. Report in the frame of the German-French programme “Numerische Strömungssimulation - Simulation Numérique d’Ecoulements”., August 1997.

    Google Scholar 

  8. J. M. Hyman, Numerical methods for tracking interfaces. Physica I2D, 1984, pp.396407.

    Google Scholar 

  9. J. Happel and H. Brenner, Low Reynolds number hydrodynamics. Prentice Hall, Englewood Cliffs, NY, 1965.

    Google Scholar 

  10. W. L. Haberman and R. M. Saure, David Taylor Model Basin Rep.no. 1143, 1958.

    Google Scholar 

  11. C. W. Hirt and B. D. Nicholls, Volume of fluid (VOF) method for the dynamics offree boundaries. J.Comp.Phys., vol. 39, 1981, pp. 201–225.

    Google Scholar 

  12. B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, Modeling Merging and Fragmentation in Multiphase Flows with Surfer. J.Comp.Phys., vol.113, 1994, pp.134147.

    Google Scholar 

  13. Jie Lt, Calcul d’Interface Affine par Morceaux. C.R.Acad.Sci.Paris, vol.t.320, série IIb, 1995, pp.391–396.

    Google Scholar 

  14. Jie Li, Résolution numérique de l’équation de Navier-Stokes avec reconnexion d’interfaces. Méthode de suivi de volume et application à l’atomisation. PhD PARIS VI, 1996.

    Google Scholar 

  15. F. Mashayek and N. Ashgriz, A hybrid finite-element-volume-of-fluid method for simulating free surface flows and interfaces. Int. J. for Numerical Methods in Fluids, vol. 20, 1995, pp. 1363–1380.

    Google Scholar 

  16. S. Popinet, Mémoire de DEA. LMM, Université Pierre et Marie Curie, 1995.

    Google Scholar 

  17. S. Popinet, S.Zaleski, A front-tracking algorithm for the accurate representation of surface tension. private communication.

    Google Scholar 

  18. S. Osher, J. A. Sethian, Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on hamilton-Jacobi Formulations. J.Comp.Phys., vol. 130, 1997, pp. 269–282.

    Google Scholar 

  19. E. G. Puckett, A. S. Almgren, J. B. Bell, D. L. Marcus and W. J. Rider, A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows. J.Comp.Phys., vol. 79, 1988, pp. 12–49.

    Article  Google Scholar 

  20. H. Rentz-Reichert, Robuste Mehrgitterverfahren zur Lösung der inkompressiblen Navier-Stokes Gleichung: Ein Vergleich. PHD 1996, Institut für Computeranwendungen der Universitat Stuttgart.

    Google Scholar 

  21. G. Ryskin and L. G. Leal, Numerical solution of free-boundary problems in fluid mechanics. Part 2. Buoyancy-driven motion of a gas bubble through a quiescent liquid. J.Fluid.Mech., vol. 148, 1984, pp. 19–35.

    Google Scholar 

  22. D.Gueyffier, J.Lie, R.Scardovelli, S.Zaleski, Volume of fluid interface tracking with smoothed surface stress methods for three-dimensional flows applied to pinching threads. private communication.

    Google Scholar 

  23. G. L. Sleijpen, H. A. van der Vorst and D. R. Fokkema, BiCGstab(l) and other hybrid BI-CG methods. Numerical Algorithms, vol. 7, 1994, pp. 75–109.

    Google Scholar 

  24. G. E. Schneider and M. J. Raw, Control volume finite element method for heat transfer and fluid flow using collocated variables. Numer. Heat Transfer, vo1. 11, 1987, pp. 363–390.

    Google Scholar 

  25. M. Sussmann, A. S. Almgren, J. B. Bell, P. Collela, L. Howell, M. Welcome, An adaptive Level Set Approach For Incompressible Two-Phase Flows. May be obtained from //www.nersc.gov/research/CCCE/publications/pub.html.

    Google Scholar 

  26. S. H. Unverdi and G. Tryggvason, A Front-Tracking Method for Viscous, Incompressible, Multi-fluid Flows. J.Comput.Phys., vol. 100, 1992, pp. 25–37.

    Google Scholar 

  27. S. P. Vanka, Block-Implicit Multigrid Solution of Navier-Stokes Equations in Primitive Variables. J.Comp.Phys., vol. 65, 1986, pp. 138–158.

    Google Scholar 

  28. G. Wittum, Multi-Grid Methods for Stokes and Navier-Stokes Equations. Transforming Smoothers: Algorithms and Numerical Results. Numer.Math. 54, 1989, pp. 543–563.

    Google Scholar 

  29. S. Zaleski, Méthodes de Simulation d’Interfaces Libres entre Fluids. Cours de l’ecole d’ete, Carcans-Maubuisson, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Ginzbourg, I., Wittum, G. (1998). Multigrid Methods for Two Phase Flows. In: Hirschel, E.H. (eds) Numerical Flow Simulation I. Notes on Numerical Fluid Mechanics (NNFM), vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44437-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44437-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53590-1

  • Online ISBN: 978-3-540-44437-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics