Skip to main content

Applications of a 4th-Order Hermitian Scheme for Non-Equidistant Grids to LES and DNS of Incompressible Fluid Flow

  • Chapter
Numerical Flow Simulation I

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NNFM,volume 66))

Summary

A fourth-order Hermitian, or compact scheme has been implemented into the production programs on both sides of the french-german cooperation. On the french side the numerical scheme is applied in its equidistant form on a transformed equidistant grid which gives the desired non-equidistant grid in the physical space. On the german side the fourth-order scheme has been formulated directly for a non-equidistant and staggered grid. The significant improvements in phase error and amplitude error behaviour of the higher-order scheme in comparison to the second-order central scheme is demonstrated in solving simpler test problems and in addition, very complex flow problems such as the non-equilibrium turbulent channel flow and the transitional or fully turbulent backward-facing step flow. The selected complex flow problems are solved by DNS for Re = 3000 and by LES for Re = 13800. The results from LES of periodically forced turbulent channel flow (with hysteresis effects) indicate the necessity of using improved subgrid scale models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Adam. A hermitian finite difference method for the solution of parabolic equations. Comp. and Maths. with Appls., 1: 393–406, 1975.

    Article  MATH  Google Scholar 

  2. G. Bärwolff, H. Wengle, and H. Jeggle. Direct numerical simulation of transitional backward-facing step flow manipulated by oscillating blowing/suction. In W. Rodi and G. Bergeles, editors, Engineering Turbulence Modelling and Experiment 3, pages 219–228, Amsterdam, 1996. Elsevier Science Publishers.

    Chapter  Google Scholar 

  3. G. Binder and J.L. Kueny. Measurements of the periodic velocity oscillations near the wall in unsteady turbulent channel flow. Michel, R. Cousteix, J. and Houdeville, R. (edts.): IUTAM Symposium ‘Unsteady Turbulent Shear Flows, Toulouse, France, Springer-Verlag, pages 100–108, 1981.

    Chapter  Google Scholar 

  4. A. Huppertz and G. Janke. Preliminary experiments on the control of three-dimensional modes in the flow over a backward-facing step. In L. Machiels S. Gavrilakis and P.A. Monkewitz, editors, Advances in Turbulence VI, pages 461–464, Dordrecht, 1996. Kluwer Academic Publishers.

    Chapter  Google Scholar 

  5. S. Jovic and D. Driver. Reynolds number effect on the skin friction in separated flows behind a backward-facing step. Experiments in Fluids, 18 (6): 464–467, 1995.

    Article  Google Scholar 

  6. J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel flow at low reynolds number. J. Fluid Mech., 177: 133–166, 1987.

    Article  MATH  Google Scholar 

  7. H. Le, P. Moin, and J. Kim. Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech., 330: 349–374, 1997.

    Article  MATH  Google Scholar 

  8. S.K. Lele. Compact difference schemes with spectral-like resolution. Journal of Computational Physics, 103: 16–42, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Malik, T. Zang, and M. Hussaini. A spectral collocation method for the navier-stokes equation. J. Comp. Physics, 61: 64–88, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Meri. Anwendung eines Kompaktverfahrens vierter Ordnung fur nicht-äquidistante Gitter zur direkten numerischen Simulation turbulenter Strömungen. Bericht Nr. 98/4, Institut für Strömungsmechanik und Aerodynamik, Universität der Bundeswehr München, 85577 Neubiberg, 1998.

    Google Scholar 

  11. R. Schiestel and S. Viazzo. A hermitian-fourier numerical methods for solving the incompressible navier-stokes equations. Int.J. Computers and Fluids, 24: 739–752, 1995.

    Article  MATH  Google Scholar 

  12. S. Viazzo and R. Schiestel. Simulation des grandes échelles turbulentes en canal à l’aide d’un schéma hermitien. C.R.Acad.Sci., 321 (IIb): 225–232, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Meri, A., Wengle, H., Dejoan, A., Védy, E., Schiestel, R. (1998). Applications of a 4th-Order Hermitian Scheme for Non-Equidistant Grids to LES and DNS of Incompressible Fluid Flow. In: Hirschel, E.H. (eds) Numerical Flow Simulation I. Notes on Numerical Fluid Mechanics (NNFM), vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44437-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44437-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53590-1

  • Online ISBN: 978-3-540-44437-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics