Skip to main content

On the Number of Intersections of Three Monochromatic Trees in the Plane

  • Conference paper
Discrete and Computational Geometry (JCDCG 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2866))

Included in the following conference series:

Abstract

Let R, B, and G be three disjoint sets of points in the plane such that the points of \(X=R \cup B \cup G\phantom{}\) are in general position. In this paper, we prove that we can draw three spanning geometric trees on R, on B, and on G such that every edge intersects at most three segments of each other tree. Then the number of intersections of the trees is at most 3|X|-9. A similar problem had been previously considered for two point sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tokunaga, S.: Crossing number of two connected geometric graphs. Info. Proc. Let. 59, 331–333 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suzuki, K. (2003). On the Number of Intersections of Three Monochromatic Trees in the Plane. In: Akiyama, J., Kano, M. (eds) Discrete and Computational Geometry. JCDCG 2002. Lecture Notes in Computer Science, vol 2866. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44400-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44400-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20776-4

  • Online ISBN: 978-3-540-44400-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics