Estimates for Discrete Logarithm Computations in Finite Fields of Small Characteristic

  • Robert Granger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2898)


We give estimates for the running-time of the function field sieve (FFS) to compute discrete logarithms in \(\mathbb F{^X_{p^n}}\) for small p. Specifically, we obtain sharp probability estimates that allow us to select optimal parameters in cases of cryptographic interest, without appealing to the heuristics commonly relied upon in an asymptotic analysis. We also give evidence that for any fixed field size some may be weaker than others of a different characteristic or field representation, and compare the relative difficulty of computing discrete logarithms via the FFS in such cases.


Factor Base Finite Field Discrete Logarithm Monic Polynomial Discrete Logarithm Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.M.: The function field sieve. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 108–121. Springer, Heidelberg (1994)Google Scholar
  2. 2.
    Adleman, L.M., Huang, M.A.: Function field sieve method for discrete logarithms over finite fields. Inform. and Comput. 151(1-2), 5–16 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bertoni, G., Guajardo, J., Kumar, S., Orlando, G., Paar, C., Wollinger, T.: Efficient GF(p m ) arithmetic architectures for cryptographic applications. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 158–175. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Coppersmith, D.: Evaluating logarithms in GF(2n). In: 16th ACM Symp. Theory of Computing, pp. 201–207 (1984)Google Scholar
  6. 6.
    Coppersmith, D.: Fast evaluation of logarithms in fields of characteristic two. IEEE Transactions in Information Theory 30(4), 587–594 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Galbraith, S.D.: Supersingular curves in cryptography. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 495–513. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Gao, S., Howell, J.: A general polynomial sieve. Designs, Codes and Cryptography 18, 149–157 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gordon, D.M., McCurley, K.S.: Massively parallel computation of discrete logarithms. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 312–323. Springer, Heidelberg (1993)Google Scholar
  10. 10.
    Joux, A., Lercier, R.: The function field sieve is quite special. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 431–445. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Lenstra, A.K., Lenstra, H.W.: The development of the number field sieve. Lecture Notes in Mathematics, vol. 1554. Springer, Heidelberg (1993)zbMATHCrossRefGoogle Scholar
  12. 12.
    Lenstra Jr., H.W.: Finding isomorphisms between finite fields. Mathematics of Computation 56(193), 329–347 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Lidl, R., Niederreiter, H.: Finite Fields. Enclyclopedia of Mathematics and its Applications, vol. 20. Addison-Wesley, Reading (1983)zbMATHGoogle Scholar
  14. 14.
    Meletiou, G.C.: Explicit form for the discrete logarithm over the field GP(p,k). Archivum Mathematicum (BRNO) 29, 25–28 (1993)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Odlyzko, A.M.: Discrete logarithms in finite fields and their cryptographic significance. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 224–314. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  16. 16.
    Page, D., Smart, N.: Hardware implementation of finite fields of characteristic three. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 529–539. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Transactions on Information Theory 24, 106–110 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Schirokauer, O.: The special function field sieve. SIAM Journal on Discrete Mathematics 16(1), 81–98 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Thomé, E.: Computation of discrete logarithms in \(\rm \mathbb{F}_{2^{607}}\). In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 107–124. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Robert Granger
    • 1
  1. 1.Department of Computer ScienceUniversity of BristolBristolUK

Personalised recommendations