Skip to main content

Advertisement

SpringerLink
  • Log in
Book cover

International Conference on Medical Image Computing and Computer-Assisted Intervention

MICCAI 2000: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2000 pp 735–745Cite as

  1. Home
  2. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2000
  3. Conference paper
A Deformable Vessel Model with Single Point Initialization for Segmentation, Quantification, and Visualization of Blood Vessels in 3D MRA

A Deformable Vessel Model with Single Point Initialization for Segmentation, Quantification, and Visualization of Blood Vessels in 3D MRA

  • Marcela Hernández-Hoyos7,
  • Alfred Anwander7,
  • Maciej Orkisz7,
  • Jean-Pierre Roux7,
  • Philippe Douek7 &
  • …
  • Isabelle E. Magnin7 
  • Conference paper
  • 1758 Accesses

  • 14 Citations

Part of the Lecture Notes in Computer Science book series (LNCS,volume 1935)

Abstract

We deal with image segmentation applied to three-dimensional (3D) analysis of of vascular morphology in magnetic resonance angiography (MRA) images. The main goal of our work is to develop a fast and reliable method for stenosis quantification. The first step towards this purpose is the extraction of the vessel axis by an expansible skeleton method. Vessel boundaries are then detected in the planes locally orthogonal to the centerline using an improved active contour. Finally, area measurements based on the resulting contours allow the calculation of stenosis parameters. The expansible nature of the skeleton associated with a single point initialization of the active contour allows overcoming some limitations of traditional deformable models. As a result, the algorithm performs well even for severe stenosis and significant vessel curvatures. Experimental results are presented in 3D phantom images as well as in real images of patients.

Download conference paper PDF

References

  1. Hu, X., Alperin, N., Levin, D., Tan, K., Mengeot, M.: Visualization of MR angiographic data with segmentation and volume-rendering techniques. J. Magnetic Resonance Imaging 1, 539–546 (1991)

    CrossRef  Google Scholar 

  2. Wilson, D.L., Noble, J.A.: Segmentation of cerebral vessels and aneurysms from MR angiography data. In: Information Processing in Med Imaging. 15th Int. Conf., pp. 423–428. Springer, Heidelberg (1997)

    Google Scholar 

  3. Masutani, Y., Schiemann, T., Höne, K.-H.: Vascular shape segmentation and structure extraction using a shape-based region-growing model. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1242–1249. Springer, Heidelberg (1998)

    Google Scholar 

  4. Chung, A.C.S., Noble, J.A.: Statistical 3D vessel segmentation using a Rician distribution. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 82–89. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  5. Verdonck, B., Bloch, I., Maître, H.: Accurate segmentation of blood vessels from 3D medical images. In: ICIP 1996, Lausanne, pp. 311–314 (1996)

    Google Scholar 

  6. Nazarian, B., Chédot, C., Sequeira, J.: Automatic reconstruction of irregular tubular structures using generalized cylinders. Revue de CFAO et d’informatique graphique 11(1-2), 11–20 (1996)

    Google Scholar 

  7. Lorenz, C., Carlsen, I.-C., Buzug, T.M., Fassnacht, C., Weese, J.: Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997, CVRMed 1997, and MRCAS 1997. LNCS, vol. 1205, pp. 233–242. Springer, Heidelberg (1997)

    CrossRef  Google Scholar 

  8. Wink, O., Niessen, W.J., Viergever, M.A.: Fast quantification of abdominal aorta aneurysmes from CTA volumes. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 138–145. Springer, Heidelberg (1998)

    Google Scholar 

  9. Wang, K., Dutton, R.W., Taylor, C.A.: Improving geometric model construction for blood flow modeling. IEEE Engineering in Medicine and Biology 18(6), 33–39 (1999)

    CrossRef  Google Scholar 

  10. Frangi, A.F., Niessen, W.J., et al.: Model-Based quantitation of 3-D magnetic resonance angiographic images. IEEE Transactions on Medical Imaging 18(10), 946–956 (1999)

    CrossRef  Google Scholar 

  11. Bulpitt, A., Berry, E.: An automatic 3D deformable model for segmentation of branching structures compared with interactive region growing. In: Med. Image Understanding Anal., Leeds UK, pp. 25–28 (1998)

    Google Scholar 

  12. Shani, U., Ballard, D.: Splines as embeddings fot generalized cylinders. In: CVGIP 1984, vol. 27(2) (1984)

    Google Scholar 

  13. Hernández-Hoyos, M., Orkisz, M., et al.: Inertia-based vessel axis extraction and stenosis quantification in 3D MRA images. In: CARS 1999, Paris, pp. 189–193 (1999)

    Google Scholar 

  14. Kass, M., Witkin, A., Terzopoulos, D.: Active contour models. Int. J. Computer Vision 1, 321–331 (1988)

    Google Scholar 

  15. Cohen, L.D.: On Active Contour Models and Balloons. Computer Vision, Graphics and Image Processing: Image Understanding 53(2), 211–218 (1991)

    MATH  Google Scholar 

  16. Sato, Y., Nakajima, S., et al.: 3D Multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997, CVRMed 1997, and MRCAS 1997. LNCS, vol. 1205, pp. 213–222. Springer, Heidelberg (1997)

    Google Scholar 

  17. Prinet, V., Monga, O.: Vessels representation in 2D and 3D angiograms. In: CARS 1997, pp. 240–245 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. CREATIS, CNRS Research Unit (UMR 5515) affiliated to INSERM, Lyon, France CREATIS, INSA 502, 20 av. Albert Einstein, 69621, Villeurbanne cedex, France

    Marcela Hernández-Hoyos, Alfred Anwander, Maciej Orkisz, Jean-Pierre Roux, Philippe Douek & Isabelle E. Magnin

Authors
  1. Marcela Hernández-Hoyos
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Alfred Anwander
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Maciej Orkisz
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Jean-Pierre Roux
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Philippe Douek
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Isabelle E. Magnin
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Departments of Biomedical Engineering and Physical Medicine & Rehabilitation, Northwestern University & Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Room 1406, 345 East Superior St., IL 60611, Chicago, U.S.A

    Scott L. Delp

  2. UPMC Shadyside Hospital and Carnegie Mellon University, 15232, Pittsburgh, PA, USA

    Anthony M. DiGoia

  3. Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

    Branislav Jaramaz

Rights and permissions

Reprints and Permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hernández-Hoyos, M., Anwander, A., Orkisz, M., Roux, JP., Douek, P., Magnin, I.E. (2000). A Deformable Vessel Model with Single Point Initialization for Segmentation, Quantification, and Visualization of Blood Vessels in 3D MRA. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2000. MICCAI 2000. Lecture Notes in Computer Science, vol 1935. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40899-4_76

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-40899-4_76

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41189-5

  • Online ISBN: 978-3-540-40899-4

  • eBook Packages: Springer Book Archive

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.226.122.122

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.