Advertisement

Symmetries of Discrete Systems

  • Pavel Winternitz
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 644)

Abstract

In this series of lectures, we review the application of Lie point symmetries, and their generalizations, to the study of difference equations. The overall theme could be called “continuous symmetries of discrete equations”.

Keywords

Continuous Limit Discrete System Point Symmetry Burger Equation Symmetry Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. J. Aczel: Lectures on Functional Equations and their Applications (Academic Press, New York 1966)Google Scholar
  2. 2. J. Aczel (Editor): Functional Equations: History, Applications and Theory (Reidel, 1984)Google Scholar
  3. 3. W.F. Ames: Nonlinear Partial Differential Equations in Engineering (Academic Press, New York 1972)Google Scholar
  4. 4. R.L. Anderson and N.H. Ibragimov: Lie-Bäcklund Transformations in Applications, SIAM Studies in Appl. Math., No 1 (SIAM, Philadelphia 1979)Google Scholar
  5. 5. M. Bakirova, V. Dorodnitsyn, and R. Kozlov: Invariant difference schemes for heat transfer equations with a source, J. Phys. A 30 (1997) pp 8139–8155Google Scholar
  6. 6. G. Bluman: Simplifying the form of Lie groups admitted by a given differential equation, J. Math. Anal. Appl. 145 (1990) pp 52–62Google Scholar
  7. 7. G. Bluman and S. Kumei: Symmetries of Differential Equations (Springer-Verlag, New York 1989)Google Scholar
  8. 8. G.B. Byrnes, R. Sahadevan, and G.R.W. Quispel: Factorizable Lie symmetries and the linearization of difference equations, Nonlinearity 8 (1995) pp 443–459Google Scholar
  9. 9. B. Champagne, W. Hereman, and P. Winternitz: The computer calculation of Lie point symmetries of large systems of differential equations, Comput. Phys. Commun. 66 (1991) pp 319–340 Google Scholar
  10. 10. P. Clarkson and F. Nijhoff (Editors): Symmetries and integrability of difference equations, LMS Lect. Note Series, vol. 255 (Cambridge Univ. Press, 1999)Google Scholar
  11. 11. A. DiBucchianico and D. Loeb: Umbral Calculus, Electr. J. Combin. DS3 (2000) http://www.combinatorics.orgGoogle Scholar
  12. 12. V.A. Dorodnitsyn: Transformation groups in a space of difference variables, J. Sov. Math. 55 (1991) pp 1490–1517Google Scholar
  13. 13. V.A. Dorodnitsyn: Finite difference analog of the Noether theorem, Dokl. Ak. Nauk 328 (1993) pp 678–682Google Scholar
  14. 14. V.A. Dorodnitsyn: Finite difference models entirely inheriting continuous symmetries of differential equations, Int. J. Mod. Phys. C 5 (1994) pp 723–734Google Scholar
  15. 15. V. Dorodnitsyn: Group Properties of Difference Equations (Fizmatlit, Moscow 2001) (in Russian)Google Scholar
  16. 16. V. Dorodnitsyn and R. Kozlov: A heat transfer with a source: the complete set of invariant difference schemes, J. Nonlinear Math. Phys. 10 (2003) pp 16–50Google Scholar
  17. 17. V. Dorodnitsyn, R. Kozlov, and P. Winternitz: Lie group classification of second order difference equations, J. Math. Phys. 41 (2000) pp 480–509Google Scholar
  18. 18. V. Dorodnitsyn, R. Kozlov, and P. Winternitz: Continuous symmetries of Lagrangians and exact solutions of discrete equations, J. Math. Phys. 45 (2004) pp 336–359Google Scholar
  19. 19. V. Dorodnitsyn, R. Kozlov, and P. Winternitz: Symmetries, Lagrangian formalism and integration of second order ordinary difference equations, J. Nonlinear Math. Phys. 10, Suppl. 2 (2003) pp 41–56Google Scholar
  20. 20. V. Dorodnitsyn and P. Winternitz: Lie point symmetry preserving discretizations for variable coefficient Korteweg-de Vries equations, Nonlinear Dynamics 22 (2000) pp 49–59Google Scholar
  21. 21. R. Floreanini, J. Negro, L.M. Nieto, and L. Vinet: Symmetries of the heat equation on a lattice, Lett. Math. Phys. 36 (1996) pp 351–355Google Scholar
  22. 22. R. Floreanini and L. Vinet: Lie symmetries of finite difference equations, J. Math. Phys. 36 (1995) pp 7024–7042Google Scholar
  23. 23. G. Gaeta: Nonlinear Symmetries and Nonlinear Equations (Kluwer, Dordrecht 1994)Google Scholar
  24. 24. D. Gomez-Ullate, S. Lafortune, and P. Winternitz: Symmetries of discrete dynamical systems involving two species, J. Math. Phys. 40 (1999) pp 2782–2804Google Scholar
  25. 25. S. Helgason: Differential Geometry and Symmetric Spaces (Academic Press, New York 1962)Google Scholar
  26. 26. W. Hereman: Symbolic software for Lie symmetry analysis. In: Lie Group Analysis of Differential Equations, vol. 3, ed. by N.H. Ibragimov (CRC Press, Boca Raton 1996) pp 367–413Google Scholar
  27. 27. R. Hernandez Heredero, D. Levi, M.A. Rodriguez, and P. Winternitz: Lie algebra contractions and symmetries of the Toda hierarchy, J. Phys. A33 (2000) pp 5025–5040Google Scholar
  28. 28. R. Hernandez Heredero, D. Levi, M.A. Rodriguez, and P. Winternitz: Relation between Bäcklund transformations and higher continuous symmetries of the Toda equation, J. Phys. A34 (2001) pp 2459–2465Google Scholar
  29. 29. R. Hernandez Heredero, D. Levi, and P. Winternitz: Symmetries of the discrete Burgers equation, J. Phys. A32 (1999) pp 2685–2695Google Scholar
  30. 30. R. Hernandez Heredero, D. Levi, and P. Winternitz: Symmetries of the discrete nonlinear Schrödinger equation, Theor. Math. Phys. 127 (2001) pp 729–737Google Scholar
  31. 31. R. Hirota: Nonlinear partial difference equations V. Nonlinear equations reducible to linear equations, J. Phys. Soc. Japan 46 (1979) pp 312–319Google Scholar
  32. 32. N.H. Ibragimov: Transformation Groups Applied to Mathematical Physics (Reidel, Boston 1985)Google Scholar
  33. 33. N. Jacobson: Lie Algebras (Interscience, New York 1962)Google Scholar
  34. 34. S. Lafortune, L. Martina, and P. Winternitz: Point symmetries of generalized Toda field theories, J. Phys. A33 (2000) pp 2419–2435Google Scholar
  35. 35. S. Lafortune, S. Tremblay, and P. Winternitz: Symmetry classification of diatomic molecular chains, J. Math. Phys. 42 (2001) pp 5341–5357Google Scholar
  36. 36. D. Levi and L. Martina: Integrable hierarchies of nonlinear difference-difference equations and symmetries, J. Phys. A34 (2001) pp 10357–10368Google Scholar
  37. 37. D. Levi and O. Ragnisco (Editors): SIDE III–Symmetries and integrability of difference equations, CRM Proc. and Lect. Notes, vol. 25 (AMS Publ., 2000)Google Scholar
  38. 38. D. Levi, P. Tempesta, and P. Winternitz: Umbral calculus, difference equations and the discrete Schrödinger equation, Preprint nlin S1/0305047Google Scholar
  39. 39. D. Levi, S. Tremblay, and P. Winternitz: Lie point symmetries of difference equations and lattices, J. Phys. A 33 (2000) pp 8507–8524Google Scholar
  40. 40. D. Levi, S. Tremblay, and P. Winternitz: Lie Symmetries of multidimensional difference equations, J. Phys. A. 34 (2001) pp 9507–9524Google Scholar
  41. 41. D. Levi, L. Vinet, and P. Winternitz (Editors): Symmetries and integrability of difference equations, CRM Proc. and Lect. Notes, vol. 9 (AMS Publ., 1996)Google Scholar
  42. 42. D. Levi, L. Vinet and P. Winternitz: Lie group formalism for difference equations, J. Phys. A30 (1997) pp 663–649Google Scholar
  43. 43. D. Levi and P. Winternitz: Continuous symmetries of discrete equations, Phys. Lett. A152 (1991) pp 335–338Google Scholar
  44. 44. D. Levi and P. Winternitz: Symmetries and conditional symmetries of differential-difference equations, J. Math. Phys. 34 (1993) pp 3713–3730Google Scholar
  45. 45. D. Levi and P. Winternitz: Symmetries of discrete dynamical systems, J. Math. Phys. 37 (1996) pp 5551–5576Google Scholar
  46. 46. D. Levi and P. Winternitz: Lie point symmetries and commuting flows for equations on lattices, J. Phys. A 35 (2002) pp 2249–2262Google Scholar
  47. 47. S. Maeda: Canonical structure and symmetries for discrete systems, Math. Japan 25 (1980) pp 405–420Google Scholar
  48. 48. S. Maeda: The similarity method for difference equations, IMA J. Appl. Math. 38, 129 (1987) pp 129–134Google Scholar
  49. 49. L. Martina, S. Lafortune, and P. Winternitz: Point symmetries of generalized field theories II. Symmetry reduction, J. Phys. A33 (2000) pp 6431–6446Google Scholar
  50. 50. M.A. Naimark and A.I. Stern: Theory of Group Representations (Springer-Verlag, New York 1982)Google Scholar
  51. 51. F.W. Nijhoff, Yu. Suris, C. Viallet (Editors): J. Nonlinear Math. Phys. 10 (2003), Supplement 2, pp 1–245Google Scholar
  52. 52. P.J. Olver: Applications of Lie Groups to Differential Equations (Springer-Verlag, New York 1993)Google Scholar
  53. 53. L.V. Ovsiannikov: Group Analysis of Differential Equations (Academic Press, New York 1982)Google Scholar
  54. 54. G.R.W. Quispel, H.W. Capel and R. Sahadevan: Continuous symmetries of difference equations; the Kac-van Moerbeke equation and Painlevé reduction, Phys. Lett. A170 (1992) pp 379-383Google Scholar
  55. 55. G.R.W. Quispel and R. Sahadevan: Lie symmetries and integration of difference equations, Phys. Lett. A184 (1993) pp 64–70Google Scholar
  56. 56. D.W. Rand, P. Winternitz, and H. Zassenhaus: On the identification of a Lie algebra given by its structure constants. I. Direct decompositions, Levi decomposition and nilradicals, Lin. Algebra Appl. 109, pp 197–246 (1988)Google Scholar
  57. 57. C. Rogers and W.F. Ames: Nonlinear Boundary Value Problems in Science and Engineering (Academic Press, Boston 1989)Google Scholar
  58. 58. S. Roman: The Umbral Calculus (Academic Press, San Diego 1984)Google Scholar
  59. 59. G.C. Rota: Finite Operator Calculus (Academic Press, San Diego 1975)Google Scholar
  60. 60. J. Satsuma and T. Tokihiro (Editors): J. Phys. A: Math. Gen. 34 (7 Dec 2001) pp 10337–10774Google Scholar
  61. 61. F. Schwarz: A REDUCE package for determining Lie symmetries of ordinary and partial differential equations, Comput. Phys. Commun. 27, 179 (1982)Google Scholar
  62. 62. M. Toda: Theory of Nonlinear Lattices (Springer, Berlin 1991)Google Scholar
  63. 63. P. Winternitz: Lie Groups and solutions of nonlinear partial differential equations. In: Integrable Systems, Quantum Groups and Quantum Field Theories, ed. by A. Ibort and M.A. Rodriguez (Kluwer, Dordrecht 1993) pp 429–495Google Scholar
  64. 64. V.E. Zakharov (Editor): What is Integrability? (Springer, New York 1991)Google Scholar

Authors and Affiliations

  • Pavel Winternitz
    • 1
  1. 1.Centre de recherches mathématiques and Département de mathématiques et de statistique, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Qc, H3C 3J7Canada

Personalised recommendations