Advertisement

The AGM-X0(N) Heegner Point Lifting Algorithm and Elliptic Curve Point Counting

  • David R. Kohel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2894)

Abstract

We describe an algorithm, AGM-X 0(N), for point counting on elliptic curves of small characteristic p using p-adic lifts of their invariants associated to modular curves X 0(N). The algorithm generalizes the contruction of Satoh [10], SST [11], and Mestre [9]. We describe this method and give details of its implementation for characteristics 2, 3, 5, 7, and 13.

Keywords

Elliptic curve cryptography modular curves point counting 

References

  1. 1.
    Bailey, D.V., Paar, C.: Efficient arithmetic in finite field extensions with application in elliptic curve cryptography. J. Cryptology 14(3), 153–176 (2001)MATHMathSciNetGoogle Scholar
  2. 2.
    Couveignes, J.-M., Henocq, T.: Action of modular correspondences around CM points. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 234–243. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Elkies, N.: Elliptic and modular curves over finite fields and related computational issues. In: Computational perspectives on number theory, Chicago, IL. AMS/IP Stud. Adv. Math., vol. 7, pp. 21–76. Amer. Math. Soc., Providence (1998)Google Scholar
  4. 4.
    Fouquet, M., Gaudry, P., Harley, R.: An extension of Satoh’s algorithm and its implementation. J. Ramanujan Math. Soc. 15, 281–318 (2000)MATHMathSciNetGoogle Scholar
  5. 5.
    Gaudry, P.: A comparison and a combination of SST and AGM algorithms for counting points of elliptic curves in characteristic 2. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 311–327. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Kato, A., Kobayashi, T., Saito, T.: Use of the Odd Characteristic Extension Field in the Internet X.509 Public Key Infrastructure, PKIX Working Group, Internet Draft, http://www.ietf.org/internet-drafts/draft-kato-pkix-ecc-oef-00.txt
  7. 7.
  8. 8.
    Cannon, J., Bosma, W. (eds.): Magma Handbook (2003), http://www.magma.maths.usyd.-edu.au/magma/htmlhelp/MAGMA.htm
  9. 9.
    Mestre, J.-F.: Lettre à Gaudry et Harley (2001), http://www.math.jussieu/ mestreGoogle Scholar
  10. 10.
    Satoh, T.: The canonical lift of an ordinary elliptic curve over a finite field and its point counting. J. Ramanujan Math. Soc. 15(4), 247–270 (2000)MATHMathSciNetGoogle Scholar
  11. 11.
    Satoh, T., Skjernaa, B., Taguchi, Y.: Fast computation of canonical lifts of elliptic curves and its application to point counting. Finite Fields Appl. 9(1), 89–101 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Satoh, T.: On p-adic point counting algorithms for elliptic curves over finite fields. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 43–66. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Schoof, R.: Elliptic curves over finite fields and the computation of square roots mod p. Math. Comput. 44, 483–494 (1985)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • David R. Kohel
    • 1
  1. 1.School of Mathematics and StatisticsUniversity of SydneyAustralia

Personalised recommendations