Skip to main content

Factoring Estimates for a 1024-Bit RSA Modulus

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNCS,volume 2894)

Abstract

We estimate the yield of the number field sieve factoring algorithm when applied to the 1024-bit composite integer RSA-1024 and the parameters as proposed in the draft version [17] of the TWIRL hardware factoring device [18]. We present the details behind the resulting improved parameter choices from [18].

Keywords

  • 1024-bit RSA
  • factorization
  • number field sieve
  • TWIRL

References

  1. Bach, E., Peralta, R.: Asymptotic semi-smoothness probabilities, University of Wisconsin, Technical report #1115 (October 1992)

    Google Scholar 

  2. Bernstein, D.J.: Circuits for integer factorization: a proposal (November 2001) (manuscript), available at http://cr.yp.to/papers.html#nfscircuit

  3. Canfield, E.R., Erdös, P., Pomerance, C.: On a problem of Oppenheim concerning. Factorisatio Numerorum, J. Number Theory 17, 1–28 (1983)

    MATH  CrossRef  Google Scholar 

  4. Cavallar, S., Dodson, B., Lenstra, A.K., Lioen, W., Montgomery, P.L., Murphy, B., te Riele, H.J.J., et al.: Factorization of a 512-bit RSA modulus. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 1–17. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  5. Coppersmith, D.: Modifications to the number field sieve. Journal of Cryptology  6, 169–180 (1993)

    MATH  CrossRef  MathSciNet  Google Scholar 

  6. Crandall, R., Pomerance, C.: Prime numbers. Springer, Heidelberg (2001)

    Google Scholar 

  7. De Bruijn, N.G.: On the number of positive integers ≤ x and free of prime factors > y, II. Indag. Math. 38, 239–247 (1966)

    Google Scholar 

  8. International Technology Roadmap for Semiconductors 2002 Update (2002), http://public.itrs.net/

  9. Lambert, R.: Computational aspects of discrete logarithms, Ph.D. thesis, University of Waterloo (1996)

    Google Scholar 

  10. Lenstra, A.K., Lenstra Jr., H.W. (eds.): The development of the number field sieve. Lecture Notes in Math., vol. 1554. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  11. Lenstra, A.K., Shamir, A.: Analysis and optimization of the TWINKLE factoring device. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 35–52. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  12. Lenstra, A.K., Shamir, A., Tomlinson, J., Tromer, E.: Analysis of Bernstein’s factorization circuit. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 1–26. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  13. Montgomery, P.L., Murphy, B.: Improved polynomial selection for the number field sieve, extended abstract for the conference on the mathematics of public-key cryptography, The Fields institute, Toronto, Ontario, Canada, June 13-17 (1999)

    Google Scholar 

  14. Murphy, B.: Modelling the yield of the number field sieve polynomials. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 137–150. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  15. Murphy, B.: Polynomial selection for the number field sieve integer factorisation algorithm, PhD thesis, The Australian National University (July 1999)

    Google Scholar 

  16. RSA Challenge Administrator, see http://www.rsasecurity.com/rsalabs/challenges/factoring/index.html

  17. Shamir, A., Tromer, E.: Factoring large numbers with the TWIRL device (preliminary draft) (February 4, 2003), available at www.wisdom.weizmann.ac.il/~tromer/papers/twirl-20030208.ps.gz

  18. Shamir, A., Tromer, E.: Factoring Large Numbers with the TWIRL Device. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 1–26. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  19. Shamir, A.: Factoring large numbers with the TWINKLE device. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, p. 2. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  20. Silverman, R.D.: Optimal parameterization of SNFS, Manuscript (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lenstra, A. et al. (2003). Factoring Estimates for a 1024-Bit RSA Modulus. In: Laih, CS. (eds) Advances in Cryptology - ASIACRYPT 2003. ASIACRYPT 2003. Lecture Notes in Computer Science, vol 2894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40061-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-40061-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20592-0

  • Online ISBN: 978-3-540-40061-5

  • eBook Packages: Springer Book Archive