Behavioural Equivalence and Indistinguishability in Higher-Order Typed Languages

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2755)


We extend the study of the relationship between behavioural equivalence and the indistinguishability relation [4,7] to the simply typed lambda calculus, where higher-order types are available. The relationship between these two notions is established in terms of factorisability [4]. The main technical tool of this study is pre-logical relations [8], which give a precise characterisation of behavioural equivalence. We then consider a higher-order logic to reason about models of the simply typed lambda calculus, and relate the resulting standard satisfaction relation to behavioural satisfaction.


Logical Relation Indistinguishability Relation Lambda Calculus Observable Type Lambda Abstraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, P.: An introduction to mathematical logic and type theory: to truth through proof. Academic Press, London (1986)zbMATHGoogle Scholar
  2. 2.
    Barendregt, H.: The Lambda Calculus-Its Syntax and Semantics. North Holland, Amsterdam (1984)zbMATHGoogle Scholar
  3. 3.
    Bidoit, M., Hennicker, R.: Behavioural theories and the proof of behavioural properties. Theoretical Computer Science 165(1), 3–55 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bidoit, M., Hennicker, R., Wirsing, M.: Behavioural and abstractor specifications. Science of Computer Programming 25(2-3), 149–186 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bidoit, M., Tarlecki, A.: Behavioural satisfaction and equivalence in concrete model categories. In: Kirchner, H. (ed.) CAAP 1996. LNCS, vol. 1059, pp. 241–256. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Henkin, L.: Completeness in the theory of types. Journal of Symbolic Logic 15, 81–91 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hofmann, M., Sannella, D.: On behavioural satisfaction and behavioural abstraction in higher-order logic. Theoretical Computer Science 167(1-2), 3–45 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Honsell, F., Sannella, D.: Pre-logical relations. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 546–561. Springer, Heidelberg (1999); An extended version is in Information and Computation 178, 23–43 (2002)CrossRefGoogle Scholar
  9. 9.
    Honsell, F., Longley, J., Sannella, D., Tarlecki, A.: Constructive data refinement in typed lambda calculus. In: Tiuryn, J. (ed.) FOSSACS 2000. LNCS, vol. 1784, pp. 149–164. Springer, Heidelberg (2000)Google Scholar
  10. 10.
    Mitchell, J.: On the equivalence of data representations. In: Lifschitz, V. (ed.) Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy, pp. 305–330. Academic Press, San Diego (1991)CrossRefGoogle Scholar
  11. 11.
    Mitchell, J.: Foundations for Programming Languages. MIT Press, Cambridge (1996)Google Scholar
  12. 12.
    Schoett, O.: Behavioural correctness of data representations. Science of Computer Programming 14, 43–57 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Division of InformaticsUniversity of Edinburgh, King’s BuildingsEdinburghScotland

Personalised recommendations