Advertisement

Observing Asymmetry and Mismatch

  • Xiaoju Dong
  • Yuxi Fu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2895)

Abstract

The chi calculus is studied in the framework incorporating two constructions widely useful in applications: asymmetric communication and mismatch condition. The barbed bisimilarity is used to give a general picture of how the two constructions affect the observational theory. Both the operational properties and the algebraic properties of the enriched calculus are investigated to support an improved understanding of the bisimulation behaviors of the model.

Keywords

Normal Form Axiomatic System Label Transition System Mobile Process Mismatch Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dong, X., Fu, Y.: Algebraic Theory of Asymmetric Chi Calculus with Mismatch. DraftGoogle Scholar
  2. 2.
    Fu, Y.: The χ-Calculus. In: Proceedings of the International Conference on Advances in Parallel and Distributed Computing, pp. 74–81. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  3. 3.
    Fu, Y.: A Proof Theoretical Approach to Communications. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 325–335. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Fu, Y.: Bisimulation Lattice of Chi Processes. In: Hsiang, J., Ohori, A. (eds.) ASIAN 1998. LNCS, vol. 1538, pp. 245–262. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Fu, Y.: Reaction Graphs. Journal of Computer Science and Technology 13, 510–530 (1998)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fu, Y.: Variations on Mobile Processes. Theoretical Computer Science 221, 327–368 (1999)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fu, Y.: Open Bisimulations of Chi Processes. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 304–319. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Fu, Y.: Bisimulation Congruence of Chi Calculus. Information and Computation 184, 201–226 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fu, Y., Yang, Z.: Chi Calculus with Mismatch. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 596–610. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Fu, Y., Yang, Z.: The Ground Congruence for Chi Calculus. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 385–396. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Fu, Y., Yang, Z.: Understanding the Mismatch Combinator in Chi Calculus. Theoretical Computer Science 290, 779–830 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fu, Y., Yang, Z.: Tau Laws for Pi Calculus. Theoretical Computer Science (to appear)Google Scholar
  13. 13.
    Milner, R., Sangiorgi, D.: Barbed Bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)Google Scholar
  14. 14.
    Parrow, J., Victor, B.: The Update Calculus. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 389–405. Springer, Heidelberg (1996)Google Scholar
  15. 15.
    Parrow, J., Victor, B.: The Fusion Calculus: Expressiveness and Symmetry in Mobile Processes. In: LICS 1998, pp. 176–185. IEEE Computer Society, Los Alamitos (1998)Google Scholar
  16. 16.
    Parrow, J., Victor, B.: The Tau-Laws of Fusion. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 99–114. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Victor, B., Parrow, J.: Concurrent Constraints in the Fusion Calculus. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 455–469. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Xiaoju Dong
    • 1
  • Yuxi Fu
    • 1
  1. 1.Department of Computer ScienceShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations