The V-Man Project: Toward Autonomous Virtual Characters

  • Eric Menou
  • Laurent Philippon
  • Stéphane Sanchez
  • Jérôme Duchon
  • Olivier Balet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2897)

Abstract

There is no doubt that the seamless integration and simulation of highly realistic autonomous virtual characters within 3D real-time applications are two important and challenging technological objectives for the virtual storytelling. The V-Man project aims at developing a Virtual Character Authoring and Animation toolkit optimized for a real-time applications. The V-Man system provides very innovative and promising features such as techniques for 3D scanning real people, character casting and dressing, character/object interaction with real-time physics, voice interaction and as well as cutting-edge character animation techniques algorithms including an advanced locomotion system, a path and task planning engine as well as adaptive generation of motions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blumberg, B.M.: Old Tricks, New Dogs: Ethology and Interactive Creatures, Media Laboratory. MIT, Cambridge (1996)Google Scholar
  2. 2.
    Chung, S., Hahn, J.K.: Animation of human walking in virtual environments. In: Computer Animation 1999, May 1999, pp. 4–15 (1999)Google Scholar
  3. 3.
    Choi, K.-J., Park, S.-H., Ko, H.-S.: Processing motion capture data to achieve positional accuracy. Graphical models and image processing: GMIP 61(5), 260–273 (1999)CrossRefGoogle Scholar
  4. 4.
    Gleicher, M.: Comparing constraint-based motion editing methods. Graphical models 63(2), 107–134 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    Gleicher, M.: Animation from Observation: Motion Capture and Modtion Editing. Computer Graphics 33(4), 51–55 (1999)CrossRefGoogle Scholar
  6. 6.
    Gleicher, M.: Retargetting Motion to New Characters. In: Proceedings of SIGGRAPH (1998)Google Scholar
  7. 7.
    Holland, J.H.: Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems. In: Michalski, R.S., Carbonnell, J.G., Mitchell, T.M. (eds.) Machine learning, an artificial intelligence approach, vol. II, Morgan Kaufmann, Los Altos (1986)Google Scholar
  8. 8.
    Iglesias, A., Luengo, F.: Behavioral Animation of Virtual Agents. In: Computer Graphics and Artificial Intelligence 2003, Limoges, France, May 14-15 (2003)Google Scholar
  9. 9.
    Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. In: Proceedings of SIGGRAPH 2002 (2002)Google Scholar
  10. 10.
    Kallmann, M., Monzani, J.S., Caicedo, A., Thalmann, D.: ACE: A Platform for the Real time simulation of Virtual Human Agents. In: Eurographics Workshop on Animation and Simulation 2000, Interlaken, Switzerland, August 21-22 (2000)Google Scholar
  11. 11.
    Koga, Y., Kondo, K., Kuffner, J., Latombe, J.C.: Planning Motions with Intentions. In: Proceedings of SIGGRAPH (1994)Google Scholar
  12. 12.
    Luga, H., Panatier, C., Balet, O., Torguet, P., Duthen, Y.: Collective Behaviour and Adaptive Interaction on a Distributed Virtual Reality System. In: Proceedings of ROMAN 1998, IEEE International Workshop on Robot and Human Communication (1998)Google Scholar
  13. 13.
    Maes, P.: How to Do the Right Thing. Connection Science 1(3), 291–323 (1989)CrossRefGoogle Scholar
  14. 14.
    Menou, E., Balet, O., Jessel, J.P.: Global Vs Local Processing for Editing Virtual Character’s paths. In: Proceedings of VRIC 2003, Laval (2003)Google Scholar
  15. 15.
    Musse, S.R., Kallmann, M., Thalmann, D.: Level of Autonomy for Virtual Human Agents. In: Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 345–349. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Multon, F., France, L., Cani-Gascuel, M.-P., Debunne, G.: Computer animation of human walking: a survey. The Journal of Visualization and Computer Animation 10(1), 39–54 (1999)CrossRefGoogle Scholar
  17. 17.
    Nebel, J.-C.: Soft Tissue Modelling from 3D Scanned Data. In: Deformable Avatars, pp. 85–97. Kluwer, Dordrecht (2001)Google Scholar
  18. 18.
    Perlin, K., Goldberg, A.: Improv: A System for Scripting Interactive Actors in Virtual Worlds. In: Proceedings of the ACM Computer Graphics, SIGGRAPH 1996 (1996)Google Scholar
  19. 19.
    Sibiryakov, A., Xiangyang, J., Nebel, J.C.: A New Automated Workflow for 3D Character Creation Based on 3D Scanned Data. In: Proceedings of ICVS 2003, Toulouse (2003)Google Scholar
  20. 20.
    Saxon, S., Barry, A.: XCS and the Monk’s Problem. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, p. 223. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Tolani, D., Goswami, A., Badler, N.: Real-time inverse kinematics techniques for anthropomorphic limbs. Graphical Models, 353–388 (2000)Google Scholar
  22. 22.
    Welman, C.: Inverse kinematics and geometric constraints for articulated figure manipulation, Master’s thesis, Simon Fraser University (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Eric Menou
    • 1
  • Laurent Philippon
    • 1
  • Stéphane Sanchez
    • 1
  • Jérôme Duchon
    • 1
  • Olivier Balet
    • 1
  1. 1.Virtual Reality Department, CSToulouseFrance

Personalised recommendations