Lower Bounds for Oblivious Single-Packet End-to-End Communication

  • Pierre Fraigniaud
  • Cyril Gavoille
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2848)


The end-to-end communication problem is a protocol design problem, for sending a packet from a specified source-node s to a specified target-node t, through an unreliable asynchronous communication network G. The protocol must insure reception and termination. In this paper, we measure the complexity of the protocol in term of header size, i.e., the quantity of information that must be attached to the packets to insure their delivery. We show that headers of Ω(log log τ) bits are required in every network, where τ denotes the tree-width of the network. In planar networks, Ω(log τ) bits are required. In particular, this latter lower bound closes the open problem by Adler and Fich in PODC ‘99 about the optimality of the hop-count protocol in square meshes.


End-to-End Sequence Transmission Tree-Width 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, M., Fich, F.: The Complexity of End-to-End Communication in Memory-less Networks. In: 18th ACM Symposium on Principles of Distributed Computing (PODC), pp. 239–248 (1999)Google Scholar
  2. 2.
    Adler, M., Fich, F., Goldberg, L., Paterson, M.: Tight Size Bounds for Packet Headers in Narrow Meshes. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 756–767. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Afek, Y., Awerbuch, B., Gaftii, E.: Applying Static Network Protocols to Dynamic Networks. In: 28th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp. 358–370 (1987)Google Scholar
  4. 4.
    Afek, Y., Gafni, E.: End-to-End Communication in Unreliable Networks. In: 7th ACM Symposium on Principles of Distributed Computing (PODC), pp. 131–148 (1988)Google Scholar
  5. 5.
    Afek, Y., Gafni, E.: Bootstrap Network Resynchonization. In: 10th ACM Symposium on Principles of Distributed Computing (PODC), pp. 295–307 (1991)Google Scholar
  6. 6.
    Afek, Y., Attiya, H., Fekete, A., Fischer, M., Lynch, N., Mansour, Y., Wang, D.-W., Zuck, L.: Reliable Communication Over Unreliable Channels. Journal of the ACM 41(6), 1267–1297 (1994)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Afek, Y., Awerbuch, B., Gafni, E., Mansour, Y., Rosén, A., Shavit, N.: Slide-The Key to Polynomial End-to-End Communication. Journal of Algorithms 22(1), 158–186 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Aho, A., Ullman, J., Wyler, A., Yannakakis, M.: Bounds on the Size and Transmission Rate of Communication Protocols. Computers and Math with Applications 8(3), 205–214 (1982)zbMATHCrossRefGoogle Scholar
  9. 9.
    Amir, E.: Efficient approximation for triangulation of minimum treewidth. In: 17th Conference on Uncertainty in Artificial Intelligence, UAI (2001)Google Scholar
  10. 10.
    Arnborg, S.: Efficient Algorithms for Combinatorial Problems on Graphs with Bounded Decomposability-A Survey. BIT 25, 2–23 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Arnborg, S., Corneil, D., Proskurowski, A.: Complexity of Finding Embeddings in a fc-Tree. SIAM J. Alg. Disc. Meth. 8, 277–284 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Awerbuch, B., Even, S.: Reliable Broadcast Protocols in Unreliable Networks. Networks 16, 381–396 (1986)CrossRefGoogle Scholar
  13. 13.
    Awerbuch, B., Mansour, Y., Shavit, N.: Polynomial End-to-End Communication. In: 30th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp. 358–363 (1989)Google Scholar
  14. 14.
    Awerbuch, B., Goldreich, O., Herzberg, A.: A Quantitative Approach to Dynamic Networks. In: 9th ACM Symposium on Principles of Distributed Computing (PODC), pp. 189–203 (1990)Google Scholar
  15. 15.
    Bartlett, K., Scantleburg, R., Wilkinson, P.: A Note on Reliable, Full-Duplex Transmission over Half-Duplex Links. Communication of the ACM 12, 260–261 (1969)CrossRefGoogle Scholar
  16. 16.
    Bodlaender, H.: A Tourist Guide through Treewidth. Acta Cybernetica 11, 1–21 (1993)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Bodlaender, H.: A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Bodlaender, H., Gilbert, J., Hafsteinsson, H., Kloks, T.: Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree. Journal of Algorithms 18, 238–255 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Bouchitté, V., Kratsch, D., Müller, H., Todinca, I.: On treewidth approximations. In: 1st Cologne-Twente Workshop on Graphs and Combinatorial Optimization, CTW (2001)Google Scholar
  20. 20.
    Diestel, R.: Graph Theory, 2nd edn. Springer, New York (2000)Google Scholar
  21. 21.
    Diestel, R., Jensen, T.R., Gorbunov, K.Y., Thomassen, C.: Highly connected sets and the excluded grid theorem. Journal of Combin. Theory B 75, 61–73 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Dolev, S., Welch, J.: Crash Resilient Communication in Dynamic Networks. IEEE Transactions on Computers 46(1), 14–26 (1997)CrossRefGoogle Scholar
  23. 23.
    Fekete, A., Lynch, N.: The Need for Headers: An Impossibility Result for Communication over Unreliable Channels. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 199–215. Springer, Heidelberg (1990)Google Scholar
  24. 24.
    Fekete, A., Lynch, N., Mansour, Y., Spinelli, J.: The Impossibility of Implementing Reliable Communication in the Face of Crashes. Journal of the ACM 40(3), 1087–1107 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Fich, F.: End-to-End Communication Protocols. In: 2nd Int. Conference on Principles of Distributed Systems (OPODIS), Hermes, pp. 37–43 (1998)Google Scholar
  26. 26.
    Fich, F., Jakoby, A.: Short Headers Suffice for Communication in a DAG with Link Failures. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 360–373. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  27. 27.
    Goldreich, O., Herzberg, A., Mansour, Y.: Source to Destination Communication in the Presence of Faults. In: 8th ACM Symposium on Principles of Distributed Computing (PODC), pp. 85–101 (1989)Google Scholar
  28. 28.
    Herzberg, A.: Connection-Based Communication in Dynamic Networks. In: 11th ACM Symposium on Principles of Distributed Computing (PODC), pp. 13–24 (1992)Google Scholar
  29. 29.
    Kushilevitz, E., Ostrovsky, R., Rosén, A.: Log-Space Polynomial End-to-End Communication. In: 28th ACM Symposium on Theory of Computing (STOC), pp. 559–568 (1995)Google Scholar
  30. 30.
    Ladner, R., LaMarca, A., Tempero, E.: Counting Protocol for Reliable End-to-End Transmission. Journal of Computer and System Sciences 56, 96–111 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Mansour, Y., Schieber, B.: The Intractability of bounded Protocols for On-Line Sequence Transmission over Non-FIFO Channels. Journal of the ACM 39(4), 783–799 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Postel, J.: Internet Protocol. Internet Engineering Task Force Request For Comments 791 (1981)Google Scholar
  33. 33.
    Reed, B.: Finding Approximate Separators and Computing Treewidth Quickly. In: 24th ACM Symposium on Theory of Computing (STOC), pp. 221–228 (1992)Google Scholar
  34. 34.
    Robertson, N., Seymour, P.D.: Graph Minors. III. Planar Tree-Width. Journal of Combin. Theory B 36, 49–64 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Robertson, N., Seymour, P.D.: Graph Minors. V. Excluding a planar graph. Journal of Combin. Theory B 41, 92–114 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. Journal of Combin. Theory B 62, 323–348 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Stenning, N.: A Data Transfer Protocol. Computer Networks 1(2), 99–110 (1976)Google Scholar
  38. 38.
    Tempero, E., Ladner, R.: Recoverable Sequence Transmission Protocols. Journal of the ACM 42(5), 1059–1090 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Vishkin, U.: A Distributed Orientation Algorithm. IEEE Transaction on Information Theory 29, 624–629 (1983)CrossRefGoogle Scholar
  40. 40.
    Wang, D.-W., Zuck, L.: Tight Bounds for the Sequence Transmission Problem. In: 8th ACM Symposium on Principles of Distributed Computing (PODC), pp. 73–83 (1989)Google Scholar
  41. 41.
    Wang, D.-W., Zuck, L.: Real-Time Sequence Transmission Problem. In: 10th ACM Symposium on Principles of Distributed Computing (PODC), pp. 111–124 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Pierre Fraigniaud
    • 1
  • Cyril Gavoille
    • 2
  1. 1.CNRS, Laboratoire de Recherche en InformatiqueUniv. Paris-SudFrance
  2. 2.Laboratoire Bordelais de Recherche en InformatiqueUniv. Bordeaux IFrance

Personalised recommendations