Constructing Disjoint Paths for Secure Communication

  • Amitabha Bagchi
  • Amitabh Chaudhary
  • Michael T. Goodrich
  • Shouhuai Xu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2848)


We propose a bandwidth-efficient algorithmic solution for perfectly-secure communication in the absence of secure infrastructure. Our solution involves connecting vertex pairs by a set of k edge-disjoint paths (a structure we call a k-system) where k is a parameter determined by the connectivity of the network. This structure is resilient to adversaries with bounded eavesdropping capability. To ensure that bandwidth is efficiently used we consider connection requests as inputs to the k-Edge Disjoint Path Coloring Problem (k-EDPCOL), a generalization of the Path Coloring Problem, in which each vertex pair is connected by a k-system, and each k-system is assigned a color such that two overlapping k-systems do not have the same color. The objective is to minimize the number of colors. We give a distributed and competitive online algorithm for k-EDPCOL. Additionally, since security applications are our focus we prove that a malicious adversary which attacks the algorithm during the process of construction of a k-system cannot learn anything more than if it had attacked the k-system once it was built.


Competitive Ratio Secure Communication Disjoint Path Color Class Short Path Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice Hall, New Jersey (1993)Google Scholar
  2. 2.
    Aumann, Y., Rabani, Y.: Improved bounds for all-optical routing. In: Proc. of the 6th ACM-SIAM Symposium on Discrete Algorithms, pp. 567–576 (1995)Google Scholar
  3. 3.
    Bagchi, A., Chaudhary, A., Goodrich, M.T., Xu, S.: Constructing disjoint paths for secure communication (full version), Available online at
  4. 4.
    Bagchi, A., Chaudhary, A., Kolman, P.: Short length Menger’s theorem and reliable optical routing. In: Proc. of the 15th Annual Symp. on Parallel Algorithms and Architectures, pp. 246–247 (2003)Google Scholar
  5. 5.
    Bagchi, A., Chaudhary, A., Kolman, P., Scheideler, C.: Algorithms for fault-tolerant routing in circuit-switched networks. In: Proc. 14th A CM Symp. on Parallel Algorithms and Architectures, pp. 265–274 (2002)Google Scholar
  6. 6.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computing (extended abstract). In: Proc. of 20th Annual Symposium on the Theory of Computing, pp. 1–10 (1988)Google Scholar
  7. 7.
    Blom, R.: An optimal class of symmetric key generation systems. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 335–338. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  8. 8.
    Blundo, C., Santis, A.D., Herzberg, A., Kutten, S., Vaccaro, U., Yung, M.: Perfectly-secure key distribution for dynamic conferences. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 471–486. Springer, Heidelberg (1993)Google Scholar
  9. 9.
    Boneh, D., Franklin, M.: Identity-based encryption from weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  11. 11.
    Busaker, R.G., Gowen, P.J.: A procedure for determining minimal-cost flows by doubling scaling. Technical Report ORO Technical Report 15, Operational Research Office, Johns Hopkins University, Baltimore, MD (1961)Google Scholar
  12. 12.
    Chaum, D., Crepeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: Proc. of 20th Annual Symposium on the Theory of Computing, pp. 11–19 (1988)Google Scholar
  13. 13.
    Dial, R.: Algorithm 360: Shortest path forest with topological ordering. Comm. ACM, 632–633 (1969)Google Scholar
  14. 14.
    Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. JACM 40(1), 17–47 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network.ow problems. J. ACM 19, 248–264 (1972)zbMATHCrossRefGoogle Scholar
  16. 16.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  17. 17.
    Franklin, M., Wright, R.: Secure communication in minimal connectivity models. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 346–360. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Galil, Z., Yu, X.: Short length versions of Menger’s theorem. In: Proc. of the 27th Annual ACM Symposium on Theory of Computing, pp. 499–508 (1995)Google Scholar
  19. 19.
    Gong, L.: Increasing availability and security of an authentication service. IEEE J. Selected Areas in Communications 11(5), 657–662 (1993)CrossRefGoogle Scholar
  20. 20.
    Iri, M.: A new method for solving transportation-network problems. Journal of the Operations Research Society of Japan 3, 27–87 (1960)Google Scholar
  21. 21.
    Jewell, W.S.: Optimal flow through networks. Technical Report Interim Technical Report 8, Operation Research Center, MIT, Cambridge, MA (1958)Google Scholar
  22. 22.
    Kleinberg, J.: Approximation Algorithms for Disjoint Paths Problems. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (1996)Google Scholar
  23. 23.
    Kolliopoulos, S.G., Stein, C.: Approximating disjoint-path problems using greedy algorithms and packing integer programs. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 153–168. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  24. 24.
    Kolman, P., Scheideler, C.: Improved bounds for the unsplittable flow problem. In: Proc. of the 13th ACM-SIAM Symposium on Discrete Algorithms, pp. 184–193 (2002)Google Scholar
  25. 25.
    Kumar, M., Goundan, P., Srinathan, K., Pandu Rangan, C.: On perfectly secure communication over arbitrary networks. In: Proc. of 21st Annual ACM Symposium on the Principles of Distributed Computing, pp. 193–202 (2002)Google Scholar
  26. 26.
    Leighton, T., Micali, S.: Secret-key agreement without public-key cryptography (extended abstract). In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 456–479. Springer, Heidelberg (1994)Google Scholar
  27. 27.
    McEliece, R., Sarwate, D.: On sharing secrets and Reed-Solomon codes. Comm. ACM 24(9), 583–584 (1981)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Rabani, Y.: Path coloring on the mesh. In: Proc. of the 37th Annual IEEE Symposium on Foundations of Computer Science, pp. 400–409 (1996)Google Scholar
  29. 29.
    Raghavan, P., Upfal, E.: Efficient routing in all-optical networks. In: Proc. of the 26th Annual Symposium on the Theory of Computing, pp. 133–143 (1994)Google Scholar
  30. 30.
    Shamir, A.: How to share a secret. Comm. ACM 22(11), 612–613 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  32. 32.
    Tomizava, N.: On some techniques useful for solution of transportation network problems. Networka 1, 173–194 (1972)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Amitabha Bagchi
    • 1
  • Amitabh Chaudhary
    • 1
  • Michael T. Goodrich
    • 1
  • Shouhuai Xu
    • 1
  1. 1.Dept. of Information & Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations