Information Gathering on the Internet Using a Distributed Intelligent Agent Model with Multi-Granular Linguistic Information

  • F. Herrera
  • E. Herrera-Viedma
  • L. Martínez
  • C. Porcel
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 137)


Information gathering in Internet is a complex activity. Find the appropriate information, required for the users, on the World Wide Web is not a simple task. Then, Internet users need tools to assist them to obtain the information required. One possibility consists of using distributed intelligent agents in the information gathering process that help the users to cope with the mass of content available on the World Wide Web.

The communication between users and agents is very important to the information gathering process be successful. The great variety of representations of the information in Internet is the main obstacle to this communication. The use of the linguistic information provides a more flexibility in the communication among agents and between agents and users. In this paper, we propose a distributed intelligent model for gathering information on the Internet, where the agents and users may communicate among them using a multi-granular linguistic model. This model provides a greater flexibility and several advantages in the user-system interaction.


Internet information retrieval intelligent agents computing with words linguistic modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.P. Bonissone and K.S. Decker, Selecting Uncertainty Calculi and Granularity: An Experiment in Trading-off Precision and Complexity, in: L.H. Kanal and J.F. Lemmer, Eds., Uncertainty in Artificial Intelligence (North-Holland, 1986) 217–247.Google Scholar
  2. 2.
    G. Bordogna and G. Pasi, A Fuzzy Linguistic Approach Generalizing Boolean Information Retrieval: A Model and Its Evaluation, J. of the American Society for Information Science 44 (1993) 70–82.CrossRefGoogle Scholar
  3. 3.
    W. Brenner, R. Zarnekow and H. Witting, Intelligent Software Agent, Foundations and Applications. Springer-Verlag. Berlin Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    O. Cordon, R Herrera, and I. Zwir. Linguistic modeling by hierarchical systems of linguistic rules. IEEE Transactions on Fuzzy Systems, 10 (1) (2001) 2–20.CrossRefGoogle Scholar
  5. 5.
    R. Degani and G. Bortolan, The Problem of Linguistic Approximation in Clinical Decision Making, Int. J. of Approximate Reasoning 2 (1988) 143–162.CrossRefGoogle Scholar
  6. 6.
    M. Delgado, F. Herrera, E. Herrera-Viedma, M.J. Martin-Bautista, M.A. Vila. Combining Linguistic Information in a Distributed Intelligent Agent Model for Information Gathering on the Internet, in: P.P. Wang, Ed., Computing with Words (John Wiley & Son, 2001) 251–276.Google Scholar
  7. 7.
    M. Delgado, F. Herrera, E. Herrera-Viedma, M.J. Martin-Bautista, L. Martnez, M.A. Vila, A Communication Model Based on the 2-Tuple Fuzzy Linguistic Representation for a Distributed Intelligent Agent System on Internet, Soft Computing 6 (2002) 320–328.MATHCrossRefGoogle Scholar
  8. 8.
    B. Fazlollahi, R.M. Vahidov and R.A. Aliev, Multi-Agent Distributed Intelligent System Based on Fuzzy Decision Making, Int. J. of Intelligent Systems 15 (2000) 849–858.MATHCrossRefGoogle Scholar
  9. 9.
    J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison-Wesley Longman, New York (1999).Google Scholar
  10. 10.
    F. Herrera and E. Herrera-Viedma, Aggregation Operators for Linguistic Weighted Information, IEEE Trans. on Systems, Man and Cybernetics, Part A: Systems 27 (1997) 646–656.CrossRefGoogle Scholar
  11. 11.
    F. Herrera, E. Herrera-Viedma and L. Martínez. A Fusion Approach for Managing Multi-Granularity Linguistic Term Sets in Decision Making, Fuzzy Sets and Systems 114 (2000) 43–58.MATHCrossRefGoogle Scholar
  12. 12.
    F. Herrera and L. Martínez, A 2-tuple Fuzzy Linguistic Representation Model for Computing with Words, IEEE Transactions on Fuzzy Systems 8:6 (2000) 746–752.Google Scholar
  13. 13.
    F. Herrera and L. Martínez, An Approach for Combining Linguistic and Numerical Information Based on 2-tuple Fuzzy Representation Model in Decision Making, Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 8:5 (2000) 539–562.MATHCrossRefGoogle Scholar
  14. 14.
    F. Herrera, L. Martínez. A model based on linguistic 2-tuples for dealing with multigranularity hierarchical linguistic contexts in Multiexpert DecisionMaking. IEEE Transactions on Systems, Man and Cybernetics. Part B: Cybernetics 31:2 (2001) 227–234.CrossRefGoogle Scholar
  15. 15.
    E. Herrera-Viedma, Modeling the Retrieval Process of an Information Retrieval System Using an Ordinal Fuzzy Linguistic Approach, J. of the American Society for Information Science and Technology 52:6 (2001) 460–475.CrossRefGoogle Scholar
  16. 16.
    E. Herrera-Viedma and E. Peis, Evaluating the Informative Quality of Documents in SGML-Format Using Fuzzy Linguistic Techniques Based on Computing with Words, Information Processing and Management (2002), in press.Google Scholar
  17. 17.
    M. Kobayashi and K. Takeda, Information Retrieval on the Web ACM Computing Surveys 32:2 (2000) 144–173.CrossRefGoogle Scholar
  18. 18.
    S. Lawrence and C. Giles, Searching the Web: General and Scientific Information Access, IEEE Communications Magazine 37:1 (1998) 116–122.CrossRefGoogle Scholar
  19. 19.
    H. Lieberman, Personal Assistants for the Web: A MIT perspective, in: M. Klusch, Ed., Intelligent Information Agents (Springer-Verlag, 1999) 279–292.CrossRefGoogle Scholar
  20. 20.
    M. Lejter and T. Dean, A Framework for the Development of Multiagent Architectures, IEEE Expert (1996) 47–59.Google Scholar
  21. 21.
    P. Maes, Agents That Reduce Work and Information Overload, Communications of the ACM 37 (1994) 31–40.CrossRefGoogle Scholar
  22. 22.
    P. Maes, Modeling Adaptive Autonomous Agents, in: C.G. Langton, Ed., Artificial Life: An Overview (MIT Press, 1995) 135–162.Google Scholar
  23. 23.
    M.J. Martin-Bautista, H.L. Larsen, M.A. Vila, A Fuzzy Genetic Algorithm to an Adaptive Information Retrieval Agent, J. of the American Society for Information Science 50(9) (1999) 760–771.CrossRefGoogle Scholar
  24. 24.
    A. Monkas, G. Zacharia, P. Maes, Amalthaea and Histos: Multiagent Systems for WWW Sites and Representation Recommendations, in: M. Klusch, Ed., Intelligent Information Agents (Springer-Verlag, 1999) 293–322.Google Scholar
  25. 25.
    C.J. Petrie, Agent-Based Engineering, the Web and Intelligence, IEEE Expert (1996) 24–29.Google Scholar
  26. 26.
    G. Salton and M.G. McGill, Introduction to Modern Information Retrieval (McGraw-Hill, 1983).Google Scholar
  27. 27.
    K. Sycara, A. Pannu, M. Williamson and D. Zeng, Distributed Intelligent Agents, IEEE Expert (1996) 36–46.Google Scholar
  28. 28.
    M. Wooldridge and N. Jennings, Intelligent Agents: Theory and Practice, The Knowledge Engineering Review 10 (1995) 115–152.CrossRefGoogle Scholar
  29. 29.
    R.R. Yager, On Ordered Weighted Averaging Aggregation Operators in Multicriteria Decision Making, IEEE Transactions on Systems, Man, and Cybernetics 18 (1988) 183–190.MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    R.R. Yager, An Approach to Ordinal Decision Making, Int. J. of Approximate Reasoning 12 (1995) 237–261.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    R.R. Yager, Protocol for Negotiations Among Multiple Intelligent Agents, in: J. Kacprzyk, H. Nurmi and M. Fedrizzi, Eds., Consensus Under Fuzziness (Kluwer Academic Publishers, 1996) 165–174.Google Scholar
  32. 32.
    R.R. Yager, Intelligent Agents for World Wide Web Advertising Decisions, International J. of Intelligent Systems 12 (1997) 379–390.CrossRefGoogle Scholar
  33. 33.
    R.R. Yager, Fusion of Multi-Agent Preference Orderings, Fuzzy Sets and Systems 112 (2001) 1–12.MathSciNetCrossRefGoogle Scholar
  34. 34.
    L.A. Zadeh, The Concept of a Linguistic Variable and Its Applications to Approximate Reasoning. Part I, Information Sciences 8 (1975) 199–249,MathSciNetMATHCrossRefGoogle Scholar
  35. 34a.
    L.A. Zadeh, The Concept of a Linguistic Variable and Its Applications to Approximate Reasoning. Part II, Information Sciences 8 (1975) 301–357,MathSciNetMATHCrossRefGoogle Scholar
  36. 34b.
    L.A. Zadeh, The Concept of a Linguistic Variable and Its Applications to Approximate Reasoning. Part III, Information Sciences 9 (1975) 43–80.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • F. Herrera
    • 1
  • E. Herrera-Viedma
    • 1
  • L. Martínez
    • 2
  • C. Porcel
    • 1
  1. 1.Dept. of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain
  2. 2.Dept. of Computer ScienceUniversity of JaénJaénSpain

Personalised recommendations