Spherical Object Reconstruction Using Simplex Meshes from Sparse Data

  • Pavel Matula
  • David Svoboda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2886)


A new method for spherical object reconstruction based on deformation of star-shaped simplex meshes has been developed in our laboratory and published recently. The method can handle volumetric as well as three-dimensional range data and is easy to use and relatively fast. The method, however, can yield wrong results for sparse data. The goal of this paper is to describe a modification of the method that is suitable also for sparse data. The performance of the proposed modification is demonstrated on real biomedical data.


Spherical objects object reconstruction deformable models sparse data simplex mesh volumetric image segmentation 


  1. 1.
    de Solórzano, C.O., García Rodriguez, E., Jones, A., Pinkel, D., Gray, J.W., Sudar, D., Lockett, S.J.: Segmentation of confocal microscope images of cell nuclei in thick tissue sections. Journal of Microscopy 193, 212–226 (1999)CrossRefGoogle Scholar
  2. 2.
    Delingette, H.: Simplex meshes: a general representation for 3D shape reconstruction. Technical Report 2214, INRIA, France (1994)Google Scholar
  3. 3.
    Delingette, H.: General object reconstruction based on simplex meshes. International Journal of Computer Vision 32(2), 111–146 (1999)CrossRefGoogle Scholar
  4. 4.
    Guilak, F.: Volume and surface area measurement of viable chondrocytes in situ using geometric modelling of serial confocal sections. Journal of Microscopy 173(3), 245–256 (1994)Google Scholar
  5. 5.
    Kozubek, M., Kozubek, S., Lukášová, E., Marečková, A., Bártová, E., Skalníková, M., Jergová, A.: High-resolution cytometry of FISH dots in interphase cell nuclei. Cytometry 36, 279–293 (1999)CrossRefGoogle Scholar
  6. 6.
    Kubínová, L., Janáček, J., Guilak, F., Opatrný, Z.: Comparison of several digital and stereological methods for estimating surface area and volume of cell studied by confocal microscopy. Cytometry 36, 85–95 (1999)CrossRefGoogle Scholar
  7. 7.
    Lohmann, G.: Volumetric Image Analysis. John Wiley & Sons, Inc. and B.G. Teubner (1998)Google Scholar
  8. 8.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: Computer Graphics (SIGGRAPH 1987), vol. 21, pp. 163–169 (1987)Google Scholar
  9. 9.
    Matula, P.: Effectivity of spherical object reconstruction using star-shaped simplex meshes. In: Cortelazzo, G.M., Guerra, C. (eds.) 1st International Symposium on 3D Data Processing Visualisation and Transmission, Padova, Italy, June 2002, vol. 1st International Symposium on 3D Data Processing Visualisation and Transmission, pp. 794–799. IEEE Computer Society, Los Alamitos (2002)CrossRefGoogle Scholar
  10. 10.
    Matula, P.: Threedimensional object reconstruction and its application in cytometry. PhD thesis, Faculty of Informatics, Masaryk University, Brno (September 2002) (in czech)Google Scholar
  11. 11.
    Matula, P., Svoboda, D.: Spherical object reconstruction using star-shaped simplex meshes. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134, pp. 608–620. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: A survey. Medical Image Analysis 1(2), 91–108 (1996)CrossRefGoogle Scholar
  13. 13.
    Montagnat, J., Delingette, H., Ayache, N.: A review of deformable surfaces: topology, geometry and deformation. Image and Vision Computing 19, 1023–1040 (2001)CrossRefGoogle Scholar
  14. 14.
    Netten, H., Young, I.T., Van Vliet, L.J., Tanke, H.J., Vrolijk, H., Sloos, W.C.R.: FISH and chips: automation of fluorescent dot counting in interphase cell nuclei. Cytometry 28, 1–10 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Pavel Matula
    • 1
  • David Svoboda
    • 1
  1. 1.Laboratory of Optical Microscopy, Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations