Geometric Measures on Arbitrary Dimensional Digital Surfaces

  • Jacques-Olivier Lachaud
  • Anne Vialard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2886)


This paper proposes a set of tools to analyse the geometry of multidimensional digital surfaces. Our approach is based on several works of digital topology and discrete geometry: representation of digital surfaces, bel adjacencies and digital surface tracking, 2D tangent computation by discrete line recognition, 3D normal estimation from slice contours. The main idea is to notice that each surface element is the crossing point of n-1 discrete contours lying on the surface. Each of them can be seen as a 4-connected 2D contour. We combine the directions of the tangents extracted on each of these contours to compute the normal vector at the considered surface element. We then define the surface area from the normal field. The presented geometric estimators have been implemented in a framework able to represent subsets of n-dimensional spaces. As shown by our experiments, this generic implementation is also efficient.


  1. 1.
    Artzy, E., Frieder, G., Herman, G.T.: The theory, design, implementation and evaluation of a three-dimensional surface detection algorithm. Computer Graphics and Image Processing 15, 1–24 (1981)CrossRefGoogle Scholar
  2. 2.
    Braquelaire, J.P., Vialard, A.: Euclidean paths: a new representation of boundary of discrete regions. Graphical Models and Image Processing 61, 16–43 (1999)MATHCrossRefGoogle Scholar
  3. 3.
    Coeurjolly, D.: Algorithmique et géométrie discrète pour la caractérisation des courbes et des surfaces. PhD thesis, Université Lumière Lyon 2, France (December 2002)Google Scholar
  4. 4.
    Debled-Renesson, I., Reveilles, J.P.: A linear algorithm for segmentation of discrete curves. International Journal of Pattern Recognition and Artificial Intelligence 9, 635–662 (1995)CrossRefGoogle Scholar
  5. 5.
    Kong, T.Y., Kopperman, R.D., Meyer, P.R.: A topological approach to digital topology. Am. Math. Monthly 98, 901–917 (1991)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kovalevsky, V.A.: Finite Topology as Applied to Image Analysis. Computer Vision, Graphics, and Image Processing 46(2), 141–161 (1989)CrossRefGoogle Scholar
  7. 7.
    Lachaud, J.-O.: Coding cells of multidimensional digital spaces to write generic digital topology and geometry algorithms. Research Report 1283-02, LaBRI, University Bordeaux 1, Talence, France (2002)Google Scholar
  8. 8.
    Lachaud, J.-O.: Coding cells of digital spaces: a framework to write generic digital topology algorithms. In: Proc. Int. Work. Combinatorial Image Analysis (IWCIA 2003), Palermo, Italy, ENDM. Elsevier, Amsterdam (2003) (to appear)Google Scholar
  9. 9.
    Lenoir, A.: Des Outils pour les Surfaces Discrètes. Estimation d’Invariants Géométriques. Préservation de la Topologie. Tracé de Géodésiques. Visualisation. PhD thesis, Université de Caen, France (September 1999)Google Scholar
  10. 10.
    Lenoir, A., Malgouyres, R., Revenu, M.: Fast computation of the normal vector field of the surface of a 3D discrete object. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 101–112. Springer, Heidelberg (1996)Google Scholar
  11. 11.
    Malandain, G.: On topology in multidimensional discrete spaces. Research Report 2098, INRIA, France (1993)Google Scholar
  12. 12.
    Reveillès, J.P.: Géométrie discrète, Calcul en nombres entiers et algorithmique. PhD thesis, Université Louis Pasteur, Strasbourg, France (1991)Google Scholar
  13. 13.
    Tellier, P., Debled-Rennesson, I.: 3D discrete normal vectors. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 447–457. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Udupa, J.K.: Multidimensional Digital Boundaries. CVGIP: Graphical Models and Image Processing 56(4), 311–323 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jacques-Olivier Lachaud
    • 1
  • Anne Vialard
    • 1
  1. 1.LaBRIUniv. Bordeaux 1TalenceFrance

Personalised recommendations