Stability in Discrete Tomography: Linear Programming, Additivity and Convexity

  • Sara Brunetti
  • Alain Daurat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2886)


The problem of reconstructing finite subsets of the integer lattice from X-rays has been studied in discrete mathematics and applied in several fields like image processing, data security, electron microscopy. In this paper we focus on the stability of the reconstruction problem for some lattice sets. First we show some theoretical bounds for additive sets, and a numerical experiment is made by using linear programming to deal with stability for convex sets.


Discrete Tomography Linear Programming Additivity 


  1. 1.
    Alpers, A., Gritzmann, P., Thorens, L.: Stability and instability in discrete tomography. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 175–186. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: X-rays characterizing some classes of discrete sets. Linear Algebra Appl. 339, 3–21 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brunetti, S., Daurat, A.: An algorithm reconstructing convex lattice sets. To be published in Theoret. Comput. Sci.Google Scholar
  4. 4.
    Brunetti, S., Daurat, A.: Stability in discrete tomography: Linear programming, additivity and convexity. Extended version with proofGoogle Scholar
  5. 5.
    Daurat, A.: Counting and generating Q-convex sets (in preparation)Google Scholar
  6. 6.
    Daurat, A., Del Lungo, A., Nivat, M.: Median points of discrete sets according to a linear distance. Disc. and Comp. Geom. 23, 465–483 (2000)zbMATHGoogle Scholar
  7. 7.
    Del Lungo, A., Nivat, M.: Reconstruction of connected sets from two projections. In: Discrete tomography, Appl. Numer. Harmon. Anal., pp. 163–188. Birkhäuser, Basel (1999)Google Scholar
  8. 8.
    Fishburn, P.C., Lagarias, J.C., Reeds, J.A., Shepp, L.A.: Sets uniquely determined by projections on axes. I. Continuous case. SIAM J. Appl. Math. 50(1), 288–306 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fishburn, P.C., Shepp, L.A.: Sets of uniqueness and additivity in integer lattices. In: Discrete tomography, Appl. Numer. Harmon. Anal., pp. 35–58. Birkhäuser, Basel (1999)Google Scholar
  10. 10.
    Gardner, R.J., Gritzmann, P.: Discrete tomography: determination of finite sets by X-rays. Trans. Amer. Math. Soc. 349(6), 2271–2295 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gritzmann, P., de Vries, S., Wiegelmann, M.: Approximating binary images from discrete X-rays. SIAM J. Optim. 11(2), 522–546 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hochstättler, W., Loebl, M., Moll, C.: Generating convex polyominoes at random. Discrete Math. 153(1-3), 165–176 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kuba, A., Herman, G.T.: Discrete tomography: a historical overview. In: Discrete tomography, Appl. Numer. Harmon. Anal., pp. 3–34. Birkhäuser, Boston (1999)Google Scholar
  14. 14.
    Thorens, L.: Personal communication (2000)Google Scholar
  15. 15.
    Volčič, A.: Well-posedness of the Gardner-McMullen reconstruction problem. In: Ramalingam, G. (ed.) Bounded Incremental Computation. LNCS, vol. 1089, pp. 199–210. Springer, Heidelberg (1984)Google Scholar
  16. 16.
    Wunderling, R.: Paralleler und Objektorientierter Simplex-Algorithmus. PhD thesis, ZIB technical report TR 96-09 (1996)Google Scholar
  17. 17.
    de Vries, S.: Discrete Tomography, Packing and Covering, and Stable Set Problems. Polytopes and Algorithms. PhD thesis, Utz, Muenchen,DE (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Sara Brunetti
    • 1
  • Alain Daurat
    • 2
  1. 1.Dipartimento di Scienze Matematiche e InformaticheUniversità di SienaSienaItaly
  2. 2.LSIIT CNRS UMR 7005Université Louis Pasteur (Strasbourg 1)Illkirch-GraffenstadenFrance

Personalised recommendations