Geodesic Object Representation and Recognition

  • A. Ben Hamza
  • Hamid Krim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2886)


This paper describes a shape signature that captures the intrinsic geometric structure of 3D objects. The primary motivation of the proposed approach is to encode a 3D shape into a one-dimensional geodesic distribution function. This compact and computationally simple representation is based on a global geodesic distance defined on the object surface, and takes the form of a kernel density estimate. To gain further insight into the geodesic shape distribution and its practicality in 3D computer imagery, some numerical experiments are provided to demonstrate the potential and the much improved performance of the proposed methodology in 3D object matching. This is carried out using an information-theoretic measure of dissimilarity between probabilistic shape distributions.


Geodesic shape distribution 3D object representation and matching Jensen-Shannon divergence 


  1. 1.
    Shinagawa, Y., Kunii, T.L., Kergosien, Y.L.: Surface coding based on Morse theory. IEEE Comp. Graph. and Appl. 11(5), 66–78 (1991)CrossRefGoogle Scholar
  2. 2.
    Fomenco, A.T., Kunii, T.L.: Topological modeling for visualization. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Koenderink, J.J.: Solid Shape. MIT Press, Cambridge (1990)Google Scholar
  4. 4.
    Bruce, J.W., Giblin, P.J.: Curves and singularities, 2nd edn. Cambridge University Press, Cambridge (1992)zbMATHGoogle Scholar
  5. 5.
    Lu, C., Cao, Y., Mumford, D.: Surface evolution under curvature flows. J. of Vis. Commun. and Image Representation 13(1/2), 65–81 (2002)CrossRefGoogle Scholar
  6. 6.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Transactions on Graphics 21(4), 807–832 (2002)CrossRefGoogle Scholar
  7. 7.
    Kullback, S., Liebler, R.: On information and sufficiency. Ann. Math. Statist. 22, 79–86 (1951)zbMATHCrossRefGoogle Scholar
  8. 8.
    Stoica, R., Zerubia, J., Francos, J.M.: Image retrieval and indexing: A hierarchical approach in computing the distance between textured images. In: IEEE Int. Conf. on Image Processing, Chicago (1998)Google Scholar
  9. 9.
    Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Information Theory 37(1), 145–151 (1991)zbMATHCrossRefGoogle Scholar
  10. 10.
    Hero, A.O., Ma, B., Michel, O., Gorman, J.: Applications of entropic spanning graphs. IEEE Signal Processing Magazine 19, 85–95 (2002)CrossRefGoogle Scholar
  11. 11.
    He, Y., Ben Hamza, A., Krim, H.: A generalized divergence measure for robust image registration. IEEE Trans. on Signal Processing 51(5) (May 2003)Google Scholar
  12. 12.
    Hilaga, M., Shinagawa, Y., Komura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proc. SIGGRAPH, pp. 203–212 (August 2001)Google Scholar
  13. 13.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proc. 5th Berkeley Symp. Math. Stat. and Prob. (1967)Google Scholar
  14. 14.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  15. 15.
    Wand, M.P., Jones, M.C.: Kernel smoothing. Chapman and Hall, London (1995)zbMATHGoogle Scholar
  16. 16.
    Elad, A., Kimmel, R.: Bending invariant representations for surfaces. In: Proc. of Computer Vision and Pattern Recognition, pp. 168–174 (2001)Google Scholar
  17. 17.
    Kimmel, R., Sethian, J.A.: Computing geodesic on manifolds. In: Proc. of National Academy of Science, vol. 95, pp. 8431–8435 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • A. Ben Hamza
    • 1
  • Hamid Krim
    • 1
  1. 1.Department of Electrical and Computer EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations