Surface Area Estimation of Digitized Planes Using Weighted Local Configurations

  • Joakim Lindblad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2886)

Abstract

We describe a method for estimating surface area of three-dimensional binary objects. The method assigns a surface area weight to each 2 × 2 × 2 configuration of voxels. The total surface area is given by a summation of the local area contributions for a digital object. We derive optimal area weights, in order to get an unbiased estimate with minimum variance for randomly oriented planar surfaces. This gives a coefficient of variation (CV) of 1.40% for planar regions. To verify the results and to address the feasibility for area estimation of curved surfaces, the method is tested on convex and non-convex synthetic test objects of increasing size. The algorithm is appealingly simple and uses only a small local neighbourhood. This allows efficient implementations in hardware and/or in parallel architectures.

Keywords

Surface area estimation marching cubes optimal weights digital planes local voxel configurations 

References

  1. 1.
    Coeurjolly, D., Flin, F., Teytaud, O., Tougne, L.: Multigrid convergence and surface area estimation. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 101–119. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators. In: Proceedings of the 16th International Conference on Pattern Recognition (ICPR), pages IV, pp. 330–334. IEEE Computer Science, Los Alamitos (2002)Google Scholar
  3. 3.
    Dorst, L., Smeulders, A.W.M.: Length estimators for digitized contours. Computer Vision, Graphics and Image Processing 40, 311–333 (1987)CrossRefGoogle Scholar
  4. 4.
    Freeman, H.: Boundary encoding and processing. In: Lipkin, B.S., Rosenfeld, A. (eds.) Picture Processing and Psychopictorics, pp. 241–266. Academic Press, London (1970)Google Scholar
  5. 5.
    Kenmochi, Y., Klette, R.: Surface area estimation for digitized regular solids. In: Latecki, L.J., Melter, R.A., Mount, D.M., Wu, A.Y. (eds.) Vision Geometry IX. Proc. SPIE, vol. 4117, pp. 100–111 (2000)Google Scholar
  6. 6.
    Klette, R.: Multigrid convergence of geometric features. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 314–333. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Klette, R., Sun, H.J.: Digital planar segment based polyhedrization for surface area estimation. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 356–366. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Kulpa, Z.: Area and perimeter measurement of blobs in discrete binary pictures. Computer Graphics and Image Processing 6, 434–454 (1977)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Lindblad, J., Nyström, I.: Surface area estimation of digitized 3D objects using local computations. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 267–278. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Lorensen, W.E., Cline, H.E.: Marching Cubes: A high resolution 3D surface construction algorithm. In: Proceedings of the 14th ACM SIGGRAPH on Computer Graphics, vol. 21, pp. 163–169 (1987)Google Scholar
  11. 11.
    Mullikin, J.C., Verbeek, P.W.: Surface area estimation of digitized planes. Bioimaging 1(1), 6–16 (1993)CrossRefGoogle Scholar
  12. 12.
    Proffit, D., Rosen, D.: Metrication errors and coding efficiency of chain-encoding schemes for the representation of lines and edges. Computer Graphics and Image Processing 10, 318–332 (1979)CrossRefGoogle Scholar
  13. 13.
    Young, I.T.: Sampling density and quantitative microscopy. Analytical and Quantitative Cytology and Histology 10(4), 269–275 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Joakim Lindblad
    • 1
  1. 1.Centre for Image AnalysisUppsala UniversityUppsalaSweden

Personalised recommendations