Advertisement

d-Dimensional Reverse Euclidean Distance Transformation and Euclidean Medial Axis Extraction in Optimal Time

  • David Coeurjolly
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2886)

Abstract

In this paper, we present optimal in time algorithms to solve the reverse Euclidean distance transformation and the reversible medial axis extraction problems for d-dimensional images. In comparison to previous technics, the proposed Euclidean medial axis may contain less points than the classical medial axis.

Keywords

Reverse Euclidean distance transform medial axis extraction d-dimensional shapes 

References

  1. 1.
    Blum, H.: A transformation for extracting descriptors of shape. In: Models for the Perception of Speech and Visual Forms, pp. 362–380. MIT Press, Cambridge (1967)Google Scholar
  2. 2.
    Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics, and Image Processing 34(3), 344–371 (1986)CrossRefGoogle Scholar
  3. 3.
    Borgefors, G., Nyström, I.: Efficient shape representation by minimizing the set of centers of maximal discs/spheres. Pattern Recognition Letters 18, 465–472 (1997)CrossRefGoogle Scholar
  4. 4.
    Coeurjolly, D.: Algorithmique et géométrie discrète pour la caractérisation des courbes et des surfaces. PhD thesis, Université Lumière Lyon 2, Bron, Laboratoire ERIC (December 2002)Google Scholar
  5. 5.
    Danielsson, P.E.: Euclidean distance mapping. CGIP 14, 227–248 (1980)Google Scholar
  6. 6.
    Sanniti di Baja, G.: Well-shaped, stable, and reversible skeletons from the (3,4)-distance transform. J. Visual Communication and Image Representation 5, 107–115 (1994)CrossRefGoogle Scholar
  7. 7.
    Hirata, T.: A unified linear-time algorithm for computing distance maps. Information Processing Letters 58(3), 129–133 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Maurer Jr., C.R., Raghavan, V., Qi, R.: A linear time algorithm for computing the euclidean distance transform in arbitrary dimensions. In: Information Processing in Medical Imaging, pp. 358–364 (2001)Google Scholar
  9. 9.
    Meijster, A., Roerdink, J.B.T.M., Hesselink, W.H.: A general algorithm for computing distance transforms in linear time. In: Mathematical Morphology and its Applications to Image and Signal Processing, pp. 331–340. Kluwer, Dordrecht (2000)Google Scholar
  10. 10.
    Montanari, U.: Continuous skeletons from digitized images. Journal of the Association for Computing Machinery 16(4), 534–549 (1969)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Nilsson, F., Danielsson, P.-E.: Finding the minimal set of maximum disks for binary objects. Graphical models and image processing 59(1), 55–60 (1997)CrossRefGoogle Scholar
  12. 12.
    Ragnemalm, I.: Contour processing distance transforms, pp. 204–211. World Scientific, Singapore (1990)Google Scholar
  13. 13.
    Ragnemalm, I.: The Euclidean Distance Transform. PhD thesis, Linköping University, Linköping, Sweden (1993)Google Scholar
  14. 14.
    Remy, E., Thiel, E.: Optimizing 3D chamfer masks with norm constraints. In: Int. Workshop on Combinatorial Image Analysis, pp. 39–56, Caen (July 2000)Google Scholar
  15. 15.
    Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. Journal of the ACM 13(4), 471–494 (1966)zbMATHCrossRefGoogle Scholar
  16. 16.
    Rosenfeld, A., Pfalz, J.L.: Distance functions on digital pictures. Pattern Recognition 1, 33–61 (1968)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Saito, T., Toriwaki, J.I.: New algorithms for Euclidean distance transformations of an n-dimensional digitized picture with applications. Pattern Recognition 27, 1551–1565 (1994)CrossRefGoogle Scholar
  18. 18.
    Saito, T., Toriwaki, J.-I.: Reverse distance transformation and skeletons based upon the euclidean metric for n-dimensionnal digital pictures. IECE Trans. Inf. & Syst. E77-D(9), 1005–1016 (1994)Google Scholar
  19. 19.
    Thiel, E.: Géométrie des distances de chanfrein. Habilitation à Diriger des Recherches, Université de la Méditerranée, Aix-Marseille 2 (Décember 2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • David Coeurjolly
    • 1
  1. 1.Laboratoire LIRISUniversité Lumière Lyon 2BronFrance

Personalised recommendations