Advertisement

Towards an Invertible Euclidean Reconstruction of a Discrete Object

  • Rodolphe Breton
  • Isabelle Sivignon
  • Florent Dupont
  • Eric Andres
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2886)

Abstract

An invertible Euclidean reconstruction method for a 2Dcurve is proposed. Hints on an extension to 3D are provided. The framework of this method is the discrete analytical geometry. The reconstruction result is more compact than classical methods such as the Marching Cubes. The notions of discrete cusps and patches are introduced.

Keywords

Discrete object invertible Euclidean reconstruction 

References

  1. 1.
    Lorensen, W., Cline, H.: Marching cubes: a high resolution 3d surface construction algorithm. In: SIGGRAPH 1987, Computer Graphics J. vol. 21, Anaheim, USA, pp. 163–169 (1987)Google Scholar
  2. 2.
    Coeurjolly, D.: Algorithmique et géométrie discrète pour la caractérisation des courbes et des surfaces. PhD thesis, Université Lumière, Lyon 2, France (2002)Google Scholar
  3. 3.
    Andres, E.: Discrete linear objects in dimension n: the standard model. Graphical Models (2003) (to appear)Google Scholar
  4. 4.
    Vittone, J., Chassery, J.M. (n − m)-cubes and farey nets for naive plane understanding. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 76–87. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Vittone, J.: Caractérisation et reconnaissance de droites et de plans en géométrie discrète. PhD thesis, Université Joseph Fourier - Grenoble 1, France (1999)Google Scholar
  6. 6.
    Veelaert, P.: Geometric constructions in the digital plane. Journal of Mathematical Imaging and Vision 11, 99–118 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Andres, E.: Defining discrete objects for polygonalization: the standard model. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 313–325. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Lindenbaum, M., Bruckstein, A.: On recursive, o(n) partitioning of a digitized curve into digital straight segments. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 949–953 (1993)CrossRefGoogle Scholar
  9. 9.
    Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graphical Models and Image Processing 59, 302–309 (1997)CrossRefGoogle Scholar
  10. 10.
    Vittone, J., Chassery, J.M.: Recognition of digital naive planes and polyhedrization. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 296–307. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Sivignon, I., Dupont, F., Chassery, J.M.: Decomposition of a 3d discrete object surface into discrete plane pieces. Algorithmica, Special Issue on Shapes Algorithmics (to appear)Google Scholar
  12. 12.
    Debled-Rennesson, I.: Étude et reconnaissance des droites et plans discrets. PhD thesis, Université Louis Pasteur, Strasbourg, France (1995)Google Scholar
  13. 13.
    Schramm, J.: Coplanar tricubes. In: Ahronovitz, E. (ed.) DGCI 1997. LNCS, vol. 1347, pp. 87–98. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Vittone, J., Chassery, J.M.: Coexistence of tricubes in digital naive plane. In: Ahronovitz, E. (ed.) DGCI 1997. LNCS, vol. 1347, pp. 99–110. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Rodolphe Breton
    • 1
  • Isabelle Sivignon
    • 3
  • Florent Dupont
    • 2
  • Eric Andres
    • 1
  1. 1.Laboratoire IRCOM-SICUniversité de PoitiersFuturoscope Chasseneuil CedexFrance
  2. 2.Laboratoire LIRIS – FRE 2672 CNRSUniversité Claude Bernard Lyon IVilleurbanne cedexFrance
  3. 3.Laboratoire LISDomaine universitaire GrenobleSt Martin d’Hères CedexFrance

Personalised recommendations