Look-Up Tables for Medial Axis on Squared Euclidean Distance Transform

  • Eric Remy
  • Edouard Thiel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2886)

Abstract

Medial Axis (MA), also known as Centres of Maximal Disks, is a useful representation of a shape for image description and analysis. MA can be computed on a distance transform, where each point is labelled to its distance to the background. Recent algorithms allow to compute Squared Euclidean Distance Transform (SEDT) in linear time in any dimension. While these algorithms provide exact measures, the only known method to characterize MA on SEDT, using local tests and Look-Up Tables, is limited to 2D and small distance values [5]. We have proposed in [14] an algorithm which computes the look-up table and the neighbourhood to be tested in the case of chamfer distances. In this paper, we adapt our algorithm for SEDT in arbitrary dimension and show that results have completely different properties.

Keywords

Medial Axis Centres of Maximal Disks Look-Up Tables Squared Euclidean Distance Transform Digital Shape Representation 

References

  1. 1.
    Arcelli, C., Sanniti di Baja, G.: Finding local maxima in a pseudo-Euclidean distance transform. Comp. Vision, Graphics and Image Proc. 43, 361–367 (1988)CrossRefGoogle Scholar
  2. 2.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Wathendunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)Google Scholar
  3. 3.
    Borgefors, G.: Centres of maximal disks in the 5-7-11 distance transform. In: 8 th Scand. Conf. on Image Analysis, pp. 105–111, Tromsø, Norway (1993)Google Scholar
  4. 4.
    Borgefors, G., Nyström, I.: Efficient shape representation by minimizing the set of centres of maximal discs/spheres. Pat. Rec. Letters 18, 465–472 (1997)CrossRefGoogle Scholar
  5. 5.
    Borgefors, G., Ragnemalm, I., Sanniti di Baja, G.: The Euclidean Distance Transform: finding the local maxima and reconstructing the shape. In: 7 th Scand. Conf. on Image Analysis, Aalborg, Denmark, vol. 2, pp. 974–981 (1991)Google Scholar
  6. 6.
    Danielsson, P.E.: Euclidean distance mapping. Comp. Graphics and Image Proc. 14, 227–248 (1980)CrossRefGoogle Scholar
  7. 7.
    Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers, 5th edn., October 1978. Oxford University Press, Oxford (1978)Google Scholar
  8. 8.
    Hirata, T.: A unified linear-time algorithm for computing distance maps. Information Proc. Letters 58, 129–133 (1996)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Meijster, A., Roerdink, J.B.T.M., Hesselink, W.H.: A general algo. for comp. distance trans. in linear time. In: Goutsias, Bloomberg (eds.) Math. Morph. and its App. to Image and Signal Proc., pp. 331–340. Kluwer, Dordrecht (2000)Google Scholar
  10. 10.
    Nilsson, F., Danielsson, P.E.: Finding the minimal set of maximum disks for binary objects. Graph. Models and Image Proc. 59(1), 55–60 (1997)CrossRefGoogle Scholar
  11. 11.
    Pfaltz, J.L., Rosenfeld, A.: Computer representation of planar regions by their skeletons. Comm. of ACM 10, 119–125 (1967)CrossRefGoogle Scholar
  12. 12.
    Ragnemalm, I.: The Euclidean distance transform in arbitrary dimensions. Pat. Rec. Letters 14(11), 883–888 (1993)MATHCrossRefGoogle Scholar
  13. 13.
    Remy, E.: Normes de chanfrein et axe médian dans le volume discret. PhD, Univ. de la Méditerranée, Aix-Marseille 2 (December 2001)Google Scholar
  14. 14.
    Remy, E., Thiel, E.: Medial axis for chamfer distances: computing look-up tables and neighbourhoods in 2D or 3D. Pat. Rec. Letters 23(6), 649–661 (2002)MATHCrossRefGoogle Scholar
  15. 15.
    Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. Journal of ACM 13(4), 471–494 (1966)MATHCrossRefGoogle Scholar
  16. 16.
    Saito, T., Toriwaki, J.I.: New algorithms for Euclidean distance trans. of an n-dim. digitized picture with applications. Pat. Rec. 27(11), 1551–1565 (1994)CrossRefGoogle Scholar
  17. 17.
    Sanniti di Baja, G., Thiel, E.: A skeletonization algorithm running on path-based distance maps. Image and Vision Computing 14(1), 47–57 (1996)CrossRefGoogle Scholar
  18. 18.
    Thiel, E.: Géométrie des distances de chanfrein. Docent, Univ. de la Méditerranée, Aix-Marseille 2 (December 2001), http://www.lim.univ-mrs.fr/~thiel/hdr

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Eric Remy
    • 1
  • Edouard Thiel
    • 2
  1. 1.LSIS (UMR CNRS 6168) – ESILMarseille Cedex 9France
  2. 2.LIF (UMR CNRS 6166)Marseille Cedex 9France

Personalised recommendations