Fuzzy Spatial Relationships from Mathematical Morphology for Model-Based Pattern Recognition and Spatial Reasoning

  • Isabelle Bloch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2886)


This paper discusses the interest of fuzzy set representations and of mathematical morphology for structural spatial knowledge representation and its use in model-based pattern recognition in images. It also briefly addresses the issues of digitization effects and computational aspects.


Membership Function Caudate Nucleus Spatial Relation Reference Object Mathematical Morphology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Allen, J.: Maintaining Knowledge about Temporal Intervals. Comunications of the ACM 26(11), 832–843 (1983)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bengoetxea, E., Larranaga, P., Bloch, I., Perchant, A., Boeres, C.: Inexact Graph Matching by Means of Estimation of Distribution Algorithms. Pattern Recognition 35, 2867–2880 (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bloch, I.: Information Combination Operators for Data Fusion: A Comparative Review with Classification. IEEE Transactions on Systems, Man, and Cybernetics 26(1), 52–67 (1996)CrossRefGoogle Scholar
  4. 4.
    Bloch, I.: Fuzzy Relative Position between Objects in Image Processing: a Morphological Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(7), 657–664 (1999)CrossRefGoogle Scholar
  5. 5.
    Bloch, I.: Fuzzy Relative Position between Objects in Image Processing: New Definition and Properties based on a Morphological Approach. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 7(2), 99–133 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bloch, I.: On Fuzzy Distances and their Use in Image Processing under Imprecision. Pattern Recognition 32(11), 1873–1895 (1999)CrossRefGoogle Scholar
  7. 7.
    Bloch, I.: Mathematical Morphology and Spatial Relationships: Quantitative, Semi- Quantitative and Symbolic Settings. In: Sztandera, L., Matsakis, P. (eds.) Applying Soft Computing in Defining Spatial Relationships, pp. 63–98. Physica Verlag, Springer (2002)Google Scholar
  8. 8.
    Bloch, I., Géraud, T., Maître, H.: Representation and Fusion of Heterogeneous Fuzzy Information in the 3D Space for Model-Based Structural Recognition - Application to 3D Brain Imaging. Artificial Intelligence Journal (2003)Google Scholar
  9. 9.
    Bloch, I., Maître, H.: Fuzzy Mathematical Morphologies: A Comparative Study. Pattern Recognition 28(9), 1341–1387 (1995)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Bloch, I., Maître, H., Anvari, M.: Fuzzy Adjacency between Image Objects. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5(6), 615–653 (1997)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Bloch, I., Saffiotti, A.: On the Representation of Fuzzy Spatial Relations in Robot Maps. In: IPMU 2002, vol. III, pp. 1587–1594, Annecy, France (2002)Google Scholar
  12. 12.
    Borgefors, G.: Distance Transforms in the Square Grid. In: Maître, H. (ed.) Progress in Picture Processing, Les Houches, Session LVIII, 1992, vol. ch. 1.4, pp. 46–80. North-Holland, Amsterdam (1996)Google Scholar
  13. 13.
    Bouchon-Meunier, B., Rifqi, M., Bothorel, S.: Towards General Measures of Comparison of Objects. Fuzzy Sets and Systems 84(2), 143–153 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Cesar, R., Bengoetxea, E., Bloch, I.: Inexact Graph Matching using Stochastic Optimization Techniques for Facial Feature Recognition. In: International Conference on Pattern Recognition ICPR 2002, Québec (August 2002)Google Scholar
  15. 15.
    Colliot, O.: Représentation, évaluation et utilisation de relations spatiales pour l’interprétation d’images, application à la reconnaissance de structures anatomiques en imagerie médicale. PhD thesis, Ecole Nationale Supérieure des Télécommunications (2003)Google Scholar
  16. 16.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New-York (1980)zbMATHGoogle Scholar
  17. 17.
    Dubois, D., Prade, H., Testemale, C.: Weighted Fuzzy Pattern Matching. Fuzzy Sets and Systems 28, 313–331 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Dutta, S.: Approximate Spatial Reasoning: Integrating Qualitative and Quantitative Constraints. International Journal of Approximate Reasoning 5, 307–331 (1991)CrossRefGoogle Scholar
  19. 19.
    Fabrizi, E., Saffiotti, A.: Extracting Topology-Based Maps from Gridmaps. In: IEEE International Conference on Robotics and Automation (ICRA 2000), San Francisco, CA (2000)Google Scholar
  20. 20.
    Freeman, J.: The Modelling of Spatial Relations. Computer Graphics and Image Processing 4(2), 156–171 (1975)CrossRefGoogle Scholar
  21. 21.
    Géraud, T., Bloch, I., Maître, H.: Atlas-guided Recognition of Cerebral Structures in MRI using Fusion of Fuzzy Structural Information. In: CIMAF 1999 Symposium on Artificial Intelligence, pp. 99–106, La Havana, Cuba (1999)Google Scholar
  22. 22.
    Keller, J.M., Wang, X.: Comparison of Spatial Relation Definitions in Computer Vision. In: ISUMA-NAFIPS 1995, pp. 679–684, College Park, MD (September 1995)Google Scholar
  23. 23.
    Matsakis, P., Wendling, L.: A New Way to Represent the Relative Position between Areal Objects. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(7), 634–642 (1999)CrossRefGoogle Scholar
  24. 24.
    Miyajima, K., Ralescu, A.: Spatial Organization in 2D Segmented Images: Representation and Recognition of Primitive Spatial Relations. Fuzzy Sets and Systems 65, 225–236 (1994)CrossRefGoogle Scholar
  25. 25.
    Perchant, A., Bloch, I.: Fuzzy Morphisms between Graphs. Fuzzy Sets and Systems 128(2), 149–168 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Perchant, A., Boeres, C., Bloch, I., Roux, M., Ribeiro, C.: Model-based Scene Recognition Using Graph Fuzzy Homomorphism Solved by Genetic Algorithm. In: GbR 1999 2nd International Workshop on Graph-Based Representations in Pattern Recognition, pp. 61–70, Castle of Haindorf, Austria (1999)Google Scholar
  27. 27.
    Rosenfeld, A.: Fuzzy Digital Topology. Information and Control 40, 76–87 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Rosenfeld, A.: The Fuzzy Geometry of Image Subsets. Pattern Recognition Letters 2, 311–317 (1984)CrossRefGoogle Scholar
  29. 29.
    Rosenfeld, A., Kak, A.C.: Digital Picture Processing. Academic Press, New-York (1976)Google Scholar
  30. 30.
    Vieu, L.: Spatial Representation and Reasoning in Artificial Intelligence. In: Stock, O. (ed.) Spatial and Temporal Reasoning, pp. 5–41. Kluwer, Dordrecht (1997)CrossRefGoogle Scholar
  31. 31.
    Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to Approximate Reasoning. Information Sciences 8, 199–249 (1975)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Isabelle Bloch
    • 1
  1. 1.Dept. TSI – CNRS UMR 5141Ecole Nationale Supérieure des TélécommunicationsParisFrance

Personalised recommendations