Advertisement

On Colorations Induced by Discrete Rotations

  • Bertrand Nouvel
  • Éric Rémila
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2886)

Abstract

We consider a non numerable family of colorations induced by discrete rotations. The symbolical dynamical system associated with the coloration is first explained. We introduce then a group that supports the dynamics of the system. The periodical cases are precised, they are induced by Pythagorean triples. Finally, a proof of the quasi-periodicity of the colorations, and a description of asymmetrical colorations conclude this paper.

References

  1. 1.
    Alessandri, P., Berthé, V.: Three distance theorems and combinatorics on words. L’enseignement mathématique 2(44), 103–132 (1998)Google Scholar
  2. 2.
    Andres, E.: The quasi-shear rotation. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 307–314. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Andres, E.: Habilitation à diriger des recherches: Modélisation analytique discrète d’objets géometriques (2000)Google Scholar
  4. 4.
    Arnoux, P., Berthé, V., Ei, H., Ito, S.: Tilings, quasicrystals, discrete planes, generalized substitutions, and multidimensional continued fractions. Discrete Mathematics and Theoretical Computer Science Proceedings (2001)Google Scholar
  5. 5.
    Berthé, V., Vuillon, L.: Suites doubles de faible complexité. Journal de Théorie des Nombres de Bordeaux 12, 179–208 (2000)zbMATHGoogle Scholar
  6. 6.
    Jacob, M.-A., Andrès, E.: On discrete rotations. In: Discrete Geometry for Computer Imagery (1995)Google Scholar
  7. 7.
    Nouvel, B.: Action des rotations sur le voisinage dans le plan discret. Master’s thesis, ENS-Lyon (2002)Google Scholar
  8. 8.
    Réveillès, J.P.: Géométrie disrète, Calcul en nombre entiers, et Algorithmique. PhD thesis, ULP (1991)Google Scholar
  9. 9.
    Sós, V.T.: On the distribution mod 1 of the sequence nα. Ann. Univ. Scient. Budapest., Eötvös Sect. Math. 1 (1958)Google Scholar
  10. 10.
    Vuillon, L., Berthé, V.: Tilings and rotations on the torus: a twodimensional generalization of sturmian sequences. Discrete Mathematics (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Bertrand Nouvel
    • 1
  • Éric Rémila
    • 1
  1. 1.Laboratoire de l’Informatique du ParallélismeUMR CNRS – ENS Lyon – INRIA 5668, École Normale Supérieure de LyonLYON CEDEX 07France

Personalised recommendations