Advertisement

Combinatorial Topologies for Discrete Planes

  • Yukiko Kenmochi
  • Atsushi Imiya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2886)

Abstract

A discrete analytical plane DAP is defined as a set of lattice points which satisfy two inequalities. In this paper, we define a discrete combinatorial plane DCP and show relations between DAPs and DCPs such that a DCP is a combinatorial surface of a DAP. From the relations, we derive new combinatorial topological properties of DAPs.

Keywords

Topological Space Lattice Point Simplicial Complex Unit Cube Convex Polyhedron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alexandrov, P.S.: Combinatorial Topology, vol. 1. Graylock Press, Rochester (1956)Google Scholar
  2. 2.
    Andrès, E.: Le plan discret. In: Actes du 3e Colloque Géométrie discrète en imagerie: fondements et applications, Strasbourg (September 1993)Google Scholar
  3. 3.
    Andrès, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graphical Models and Image Processing 59(5), 302–309 (1997)CrossRefGoogle Scholar
  4. 4.
    Debled-Renesson, I.: Etude et reconnaissance des droites et plans discrets. Thèse de doctorat de l’université Louis Pasteur (1995)Google Scholar
  5. 5.
    Françon, J.: Sur la topologie d’un plan arithmétique. Theoretical Computer Science 156, 159–176 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Françon, J., Schramm, J.M., Tajine, M.: Recognizing arithmetic straight lines and planes. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 141–150. Springer, Heidelberg (1996)Google Scholar
  7. 7.
    Kenmochi, Y., Imiya, A.: Naive planes as discrete combinatorial surfaces. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 249–261. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Kenmochi, Y., Imiya, A.: Discrete polyhedrization of a lattice point set. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 148–160. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Reveillès, J.-P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’état soutenue à l’université Louis Pasteur (1991)Google Scholar
  10. 10.
    Stillwell, J.: Classical topology and combinatorial group theory. Springer, New York (1993)zbMATHGoogle Scholar
  11. 11.
    Ziegler, G.M.: Lectures on polytopes. Springer, New York (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Yukiko Kenmochi
    • 1
  • Atsushi Imiya
    • 2
    • 3
  1. 1.Department of Information TechnologyOkayama UniversityJapan
  2. 2.National Institute of Informatics, Department of InformaticsThe Graduate University for Advanced StudiesTokyoJapan
  3. 3.Institute of Media and Information TechnologyChiba UniversityChibaJapan

Personalised recommendations